Skip to main content

Nanomaterial-Based PCM Composites for Thermal Energy Storage in Buildings

  • Chapter
  • First Online:
Nano and Biotech Based Materials for Energy Building Efficiency

Abstract

Energy efficiency in buildings is a vital factor to be addressed in every stages of development of building envelopes, since buildings consume almost one-third to one-quarter of energy being produced globally. In the spectrum of techniques available to cater the building cooling and heating load demands, there has been a continuous quest toward latent thermal energy storage (LTES) systems for achieving energy redistribution requirements in buildings. The interesting fact about the LTES systems relies on the phase change materials (PCMs) being used to store and release heat energy depending upon the thermal load demand. A step ahead, the utilization of nanomaterials paves the way for accomplishing enhanced thermal performance of such PCMs on a long run. This chapter is exclusively dedicated to provide better understanding of a variety of nanomaterial-based PCM composites for thermal energy storage and energy efficiency in buildings. This is an ever-growing as well as emerging field of interest to wide scientific and engineering communities globally. The nucleus of this chapter is focused on the enhancement of thermal energy storage capabilities of NanoPCM composites which would contribute for achieving improved energy efficiency in buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biswas K, Abhari R (2014) Low-cost phase change material as an energy storage medium in building envelopes: experimental and numerical analyses. Energy Convers Manag 88:1020–1031

    Google Scholar 

  • Biswas K, Lu J, Soroushian P, Shrestha S (2014) Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Appl Energy 131:517–529

    Article  Google Scholar 

  • Black JK, Tracy LE, Roche CP, Henry PJ, Pesavento JB, Adalsteinsson T (2010) Phase transition of hexadecane in poly(alkyl methacrylate) core–shell microcapsules. J Phys Chem B 114:4130–4137

    Article  Google Scholar 

  • Cai YB, Zong X, Zhang JJ, Hu YY, Wei QF, He GF (2013) Electrospun nanofibrous mats absorbed with fatty acid eutectics as an innovative type of form-stable phase change materials for storage and retrieval of thermal energy. Solar Energy Mater Solar Cells 109:160–168

    Article  Google Scholar 

  • Cao L, Su D, Tang Y, Fang G, Tang F (2015) Properties evaluation and applications of thermal energy storage materials in buildings. Renew Sustain Energy Rev 48:500–522

    Article  Google Scholar 

  • Chen Z-H, Yu F, Zeng X-R, Zhang Z-G (2012) Preparation characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Appl Energy 91:7–12

    Article  Google Scholar 

  • Cui Y, Liu C, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Solar Energy Mater Solar Cells 95:1208–1212

    Article  Google Scholar 

  • de Gracia Alvaro, Cabeza LF (2015) Phase change materials and thermal energy storage for buildings. Energy Build 103:414–419

    Article  Google Scholar 

  • Do CV, Nguyen TTT, Park JS (2012) Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics. Solar Energy Mater Solar Cells 104:131–139

    Article  Google Scholar 

  • Elgafy A, Lafdi K (2005) Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 43:3067–3074

    Article  Google Scholar 

  • Fan L, Khodadadi JM (2011) Temperature-dependent thermal conductivity of eicosane-based phase change materials with copper oxide nanoparticles. In: International symposium on thermal and materials nanoscience and nanotechnology, Antalya, Turkey, 8 p

    Google Scholar 

  • Fan L, Khodadadi JM (2012) An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM). Int J Thermal Sci 62:120–126

    Article  Google Scholar 

  • Fang Y, Kuang S, Gao X, Zhang Z (2008) Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers Manage 49:3704–3707

    Article  Google Scholar 

  • Fang G, Li H, Yang F, Liu X, Wu S (2009) Preparation and characterization of nanoencapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J 153:217–221

    Article  Google Scholar 

  • Fang Y, Yu H, Wan W, Gao X, Zhang Z (2013) Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials. Energy Convers Manage 76:430–436

    Article  Google Scholar 

  • Fang Y, Liu X, Liang X, Liu H, Gao X, Zhang Z (2014) Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage. Appl Energy 132:551–556

    Article  Google Scholar 

  • Fuensanta M, Paiphansiri U, Romero-Sanchez MD, Guillem C, Lopez-Buendia AM, Landfester K (2013) Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage. Thermochim Acta 565:95–101

    Article  Google Scholar 

  • Gao JY (2008) An experimental study on melting heat transfer behavior of a phasechange- material containing Al2O3 nanoparticles in a vertical rectangular enclosure. MS thesis, National Cheng Kung University, Taiwan 86 p. Aavailable online at http://ethesys.lib.ncku.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0825108-153106

  • Giro-Paloma J, Konuklu Y, Fernandez AI (2015) Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material. Sol Energy 112:300–309

    Article  Google Scholar 

  • Ho CJ, Gao JY (2009) Preparation and thermophysical properties of nanoparticle-inparaffin emulsion as phase change material. Int Commun Heat Mass Transfer 36:467–470

    Article  Google Scholar 

  • Hong H, Wensel J, Peterson S, Roy W (2007a) Efficiently lowering the freezing point in heat transfer coolants using carbon nanotubes. J Thermophys Heat Transfer 21:446–448

    Article  Google Scholar 

  • Hong H, Zheng Y, Roy W (2007b) Nanomaterials for efficiently lowering the freezing point of anti-freeze coolants. J Nanosci Nanotechnol 7:1–5

    Google Scholar 

  • Hossain R, Mahmud S, Dutta A, Pop I (2015) Energy storage system based on nanoparticle-enhanced phase change material inside porous medium. Int J Thermal Sci 91:49–58

    Article  Google Scholar 

  • Jamekhorshid A, Sadrameli SM, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31:531–542

    Article  Google Scholar 

  • Jeong S-G, Chang SJ, Seunghwan W, Sumin K (2015) Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets. Solar Energy Mater Solar Cells 139:65–70

    Article  Google Scholar 

  • Khadiran T, Hussein MZ, Zainal Z, Rusli R (2015a) Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review. Solar Energy Mater Solar Cells 143:78–98

    Article  Google Scholar 

  • Khadiran T, Hussein M Z, Zainal Z, Rusli R (2015b) Shape-stabilised n-octadecane/activated carbon nanocomposite phase change material for thermal energy storage. J Taiwan Inst Chem Eng (in press)

    Google Scholar 

  • Khodadadi JM, Hosseinizadeh SF (2007) Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int J Heat Mass Transfer 34:534–543

    Article  Google Scholar 

  • Khodadadi JM, Fan L, Babaei H (2013) Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 24:418–444

    Article  Google Scholar 

  • Kim S, Drzal LT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Solar Energy Mater Solar Cells 93:136–142

    Article  Google Scholar 

  • Konuklu Y, Halime OP, Unal M (2015) Nanoencapsulation of n-alkanes with poly(styrene-co-ethylacrylate) shells for thermal energy storage. Appl Energy 150:335–340

    Article  Google Scholar 

  • Kosny J, Shukla N, Fallahi A (2013) Cost analysis of simple phase change material-enhanced building envelopes in southern U.S. climates, report for U.S. Department of Energy, Fraunhofer CSE, http://cse.fraunhofer.org/Portals/55819/docs/ba_pcm_enhanced_building_envelopes.pdf

  • Kwon HJ (2010) Preparation of n-octadecane nanocapsules by using interfacial redox initiation in miniemulsion polymerization. Macromol Res 18(9):923–926

    Article  Google Scholar 

  • Liu Y-D, Zhou Y-G, Tong M-W, Zhou X-S (2009) Experimental study of thermal conductivity and phase change performance of nanofluids PCMs. Microfluid Nanofluid 7:579–584

    Article  Google Scholar 

  • Manikam VR, Cheong KY, Razak KA (2011) Chemical reduction methods for synthesizing Ag and Al nanoparticles and their respective nanoalloys. Mater Sci Eng, B 176:187–203

    Article  Google Scholar 

  • Mo S, Chen Y, Yang J, Luo X (2011) Experimental study on solidification behavior of carbon nanotube nanofluid. Adv Mater Res 171–172:333–336

    Google Scholar 

  • Pacheco-Torgal F (2014) Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construct Build Mater 51:151–162

    Google Scholar 

  • Parameshwaran R, Kalaiselvam S (2013a) Effect of aggregation on thermal conductivity and heat transfer in hybrid nanocomposite phase change colloidal suspensions. Appl Phys Lett 103:193113

    Article  Google Scholar 

  • Parameshwaran R, Kalaiselvam S (2013b) Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings. Energy 59:194–214

    Article  Google Scholar 

  • Parameshwaran R, Kalaiselvam S (2014) Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings. Energy Build 69:202–212

    Article  Google Scholar 

  • Parameshwaran R, Deepak K, Saravanan R, Kalaiselvam S (2014) Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage. Appl Energy 115:320–330

    Article  Google Scholar 

  • Sanchez F, Sobolev K (2010) Nanotechnology in concrete—a review. Constr Build Mater 24:2060–2071

    Article  Google Scholar 

  • Sari A, Alkan C, Özcan AN (2015a) Synthesis and characterization of micro/nano capsules of PMMA/capric-stearic acid eutectic mixture for low temperature-thermal energy storage in buildings. Energy Build 90:106–113

    Article  Google Scholar 

  • Sari A, Alkan C, Döğüşcü DK, Kızıl Ç (2015b) Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications. Sol Energy 115:195–203

    Article  Google Scholar 

  • Sayyar M, Weerasiri RR, Soroushian P, Lu J (2014) Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions. Energy Build 75:249–255

    Article  Google Scholar 

  • Seeniraj RV, Velraj R, Narasimhan NL (2002) Heat transfer enhancement study of a LHTS unit containing dispersed high conductivity particles. J SolEnergy Eng 124:243–249

    Google Scholar 

  • Shaikh S, Lafdi K, Hallinan K (2008) Carbon nanoadditives to enhance latent energy storage of phase change materials. J Appl Phys 103(094302):6

    Google Scholar 

  • Siegel R (1977) Solidification of low conductivity material containing dispersed high conductivity particles. Int J Heat Mass Transf 20:1087–1089

    Article  Google Scholar 

  • Sobolev K, Ferrada-Gutiérrez M (2005) How nanotechnology can change the concrete world: part 1. Am Ceram Soc Bull 84:14–17

    Google Scholar 

  • Su W, Darkwa J, Georgios K (2015) Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev 48:373–391

    Article  Google Scholar 

  • Tumirah K, Hussein MZ, Zulkarnain Z, Rafeadah R (2014) Nano-encapsulated organic phase change material based on copolymer nanocomposite for thermal energy storage. Energy 66:881–890

    Article  Google Scholar 

  • Wang J, Xie H, Xin Z (2008) Thermal properties of heat storage composites containing multiwalled carbon nanotubes. J Appl Phys 104(113537):5

    Google Scholar 

  • Wang J, Xie H, Xin Z (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488:39–42

    Article  Google Scholar 

  • Wang J, Xie H, Li Y, Xin Z (2010a) PW based phase change nanocomposites containing γ-Al2O3. J Therm Anal Calorim 102:709–713

    Article  Google Scholar 

  • Wang J, Xie H, Xin Z, Li Y (2010b) Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon 48:3979–3986

    Article  Google Scholar 

  • Wang J, Xie H, Xin Z, Li Y, Chen L (2010c) Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy 84:339–344

    Article  Google Scholar 

  • Wang N, Yang S, Zhu D, Ju X (2010d) Preparation and heat transfer behavior of paraffin based composites containing nano-copper particles. In: Proceedings of the seventh international conference on multiphase flow, Tampa, FL, 4 p

    Google Scholar 

  • Wang Y, Zhang Y, Xia T, Zhao W, Yang W H (2014) Effects of fabricated technology on particle size distribution and thermal properties of stearic-eicosanoic acid/polymethylmethacrylate nanocapsules. Solar Energy Mater Solar Cells 120B:481–490

    Google Scholar 

  • Weinstein RD, Kopec TC, Fleischer AS, D′Addio E, Bessel CA (2008) The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics. J Heat Transfer 130(042405):8

    Google Scholar 

  • Wi S, Seo J, Jeong S-G, Chang SJ, Kang Y, Kim S (2015) Thermal properties of shapestabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings. Sol Energy Mater Sol Cells 143:168–173

    Google Scholar 

  • Wu S, Zhu D, Li X, Li H, Lei J (2009) Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim Acta 483:73–77

    Article  Google Scholar 

  • Wu S, Zhu D, Zhang X, Huang J (2010) Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energy Fuels 24:1894–1898

    Article  Google Scholar 

  • Wu W, Bostanci H, Chow LC, Ding SJ, Hong Y, Su M, Kizito JP, Gschwender L, Snyder CE (2011) Jet impingement and spray cooling using slurry of nanoencapsulated phase change materials. Int J Heat Mass Transf 54:2715–2723

    Article  Google Scholar 

  • Xiang J, Drzal LT (2011) Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells 95:1811–1818

    Article  Google Scholar 

  • Xie H, Wan J, Chen L (2008) Effects on the phase transformation temperature of nanofluids by the nanoparticles. J Mater Sci Technol 25:742–744

    Google Scholar 

  • Yavari F, Raeisi Fard H, Pashayi K, Rafiee MA, Zamiri A, Yu Z (2011) Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C 115:8753–8758

    Article  Google Scholar 

  • Zeng JL, Sun LX, Xu F, Tan ZC, Zhang ZH, Zhang J (2007) Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim 87:369–373

    Article  Google Scholar 

  • Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun XL (2008) Thermal conductivityenhancement of MWNTS on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim 91:443–446

    Article  Google Scholar 

  • Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF (2009) Effects of MWNTS on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim 95:507–512

    Article  Google Scholar 

  • Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L (2010) Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim 101:385–389

    Article  Google Scholar 

  • Zhang H, Wang X (2009) Fabrication and performances of microencapsulated phase change materials on n-octadecane core and resorcinol-modified melamine-formaldehyde shell. Colloids Surf A 332:129–138

    Article  Google Scholar 

  • Zhang GH, Bon SAF, Zhao CY (2012a) Synthesis characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Sol Energy 86:1149–1154

    Article  Google Scholar 

  • Zhang S, Wu J-Y, Tse C-T, Niu J (2012b) Effective dispersion of multi-wall carbon nano-tubes in hexadecane through physiochemical modification and decrease of supercooling. Sol Energy Mater Sol Cells 96:124–130

    Article  Google Scholar 

  • Zhou Z, Zhang Zuo J, Huang K, Zhang L (2015) Phase change materials for solar thermal energy storage in residential buildings in cold climate. Renew Sustain Energy Rev 48:692–703

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Birla Institute of Technology and Science, Pilani, for providing financial support to carry out this research work under Research Initiation Grant (BITS/GAU/RIG/54) and UGC Major Research Project (F. No. 42-894/2013 (SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Parameshwaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parameshwaran, R., Kalaiselvam, S. (2016). Nanomaterial-Based PCM Composites for Thermal Energy Storage in Buildings. In: Pacheco Torgal, F., Buratti, C., Kalaiselvam, S., Granqvist, CG., Ivanov, V. (eds) Nano and Biotech Based Materials for Energy Building Efficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-27505-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27505-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27503-1

  • Online ISBN: 978-3-319-27505-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics