Skip to main content

Nanocellulose Aerogels as Thermal Insulation Materials

  • Chapter
  • First Online:
Nano and Biotech Based Materials for Energy Building Efficiency

Abstract

There is a high demand of energy consumption due to the increasing population, industrial expansion, and development plans. However, the increasing cost of energy and the negative impact on the environment by energy production plants have resulted in the need to find means to substantially reduce energy consumption. Buildings are one of the main factors contributing to the world energy consumption. About two-thirds of the total energy is used for the buildings. It is essential to reduce energy consumption of buildings by finding more effective thermal insulation materials. Cellulose is a green, cheap, and abundant material with low thermal conductivity. Its combination with aerogel structure forms a novel and effective heat insulation material known as cellulose aerogel. Cellulose aerogels can be fabricated from bacterial cellulose, wood/paper pulps, or cellulosic wastes. The aerogels become water-repellent after being treated with silane reagents via a chemical vapor deposition (CVD) method. They show highly porous structures with good flexibility, high stability, and extremely low thermal conductivities. These characteristics make them promising for thermal insulation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Homoud DMS (2005) Performance characteristics and practical applications of common building thermal insulation materials. Build Environ 40(3):353–366. doi:10.1016/j.buildenv.2004.05.013

    Article  Google Scholar 

  • Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43(4):761–769. doi:10.1016/j.enbuild.2010.12.012

    Article  Google Scholar 

  • Bheekhun N, Abu Talib AR, Hassan MR (2013) Aerogels in aerospace: an overview. Adv Mater Sci Eng 2013:18. doi:10.1155/2013/406065

    Article  Google Scholar 

  • Briga-Sá A, Nascimento D, Teixeira N, Pinto J, Caldeira F, Varum H, Paiva A (2013) Textile waste as an alternative thermal insulation building material solution. Constr Build Mater 38:155–160. doi:10.1016/j.conbuildmat.2012.08.037

    Article  Google Scholar 

  • Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv Mater 19(5):661–664. doi:10.1002/adma.200601748

    Article  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. ChemSusChem 1(1–2):149–154

    Article  Google Scholar 

  • Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed Engl 51(9):2076–2079. doi:10.1002/anie.201105730

    Article  Google Scholar 

  • Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17(6):435–447. doi:10.3109/10408419109115207

    Article  Google Scholar 

  • Cervin NT, Aulin C, Larsson PT, WÃ¥gberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19(2):401–410

    Article  Google Scholar 

  • Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53

    Article  MathSciNet  Google Scholar 

  • Chen W, Yu H, Li Q, Liu Y, Li J (2011) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7(21):10360–10368

    Article  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  Google Scholar 

  • Fan Z, Marconnet A, Nguyen ST, Lim CYH, Duong HM (2014) Effects of heat treatment on the thermal properties of highly nanoporous graphene aerogels using the infrared microscopy technique. Int J Heat Mass Transf 76:122–127. doi:10.1016/j.ijheatmasstransfer.2014.04.023

    Article  Google Scholar 

  • Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175. doi:10.1016/j.cej.2015.02.034

    Article  Google Scholar 

  • Gesser HD, Goswami PC (1989) Aerogels and related porous materials. Chem Rev 89(4):765–788. doi:10.1021/cr00094a003

    Article  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352

    Article  Google Scholar 

  • Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244(1):126–135. doi:10.1002/masy.200651212

    Article  Google Scholar 

  • Isobe N, Kimura S, Wada M, Kuga S (2012) Mechanism of cellulose gelation from aqueous alkali-urea solution. Carbohydr Polym 89(4):1298–1300. doi:10.1016/j.carbpol.2012.03.023

    Article  Google Scholar 

  • Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build 43(10):2549–2563. doi:10.1016/j.enbuild.2011.05.015

    Article  Google Scholar 

  • Jin C, Han S, Li J, Sun Q (2015) Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydr Polym 123:150–156. doi:10.1016/j.carbpol.2015.01.056

    Article  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio—and nanocomposites: a review. Int J Polym Sci. doi:10.1155/2011/837875

    Google Scholar 

  • Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 04(02). doi:10.4172/2155-9821.1000150

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  Google Scholar 

  • Li J, Lu Y, Yang D, Sun Q, Liu Y, Zhao H (2011) Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3- methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 12(5):1860–1867

    Article  Google Scholar 

  • Li J, Wan C, Lu Y, Sun Q (2014) Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity. Front Agric Sci Eng 1(1):46. doi:10.15302/j-fase-2014004

    Article  Google Scholar 

  • Liang H-W, Wu Z-Y, Chen L-F, Li C, Yu S-H (2015) Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11:366–376. doi:10.1016/j.nanoen.2014.11.008

    Article  Google Scholar 

  • Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2007) Ultralight-weight cellulose aerogels from NBnMO-stabilized lyocell dopes. Res Lett Mater Sci 2007:1–4. doi:10.1155/2007/73724

    Article  Google Scholar 

  • Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62(2):129–135

    Article  Google Scholar 

  • Liebner F, Haimer E, Wendland M, Neouze MA, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T (2010) Aerogels from unaltered bacterial cellulose: Application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10(4):349–352

    Article  Google Scholar 

  • Mieck KP, Nechwatal A, Knobelsdorf C (1994) Potential applications of natural fibres in composite materials. Melliand Textilberichte 75(11):892–898 + E228

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  Google Scholar 

  • Nguyen ST, Nguyen HT, Rinaldi A, Nguyen NPV, Fan Z, Duong HM (2012) Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications. Colloids Surf A 414:352–358. doi:10.1016/j.colsurfa.2012.08.048

    Article  Google Scholar 

  • Nguyen ST, Feng J, Le NT, Le ATT, Hoang N, Tan VBC, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52(51):18386–18391. doi:10.1021/ie4032567

    Article  Google Scholar 

  • Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A 445:128–134. doi:10.1016/j.colsurfa.2014.01.015

    Article  Google Scholar 

  • Nordell P (2006) Wet strength development of paper. Lulea University of Technology

    Google Scholar 

  • Oshima T, Sakamoto T, Ohe K, Baba Y (2014) Cellulose aerogel regenerated from ionic liquid solution for immobilized metal affinity adsorption. Carbohydr Polym 103:62–69. doi:10.1016/j.carbpol.2013.12.021

    Article  Google Scholar 

  • Pierre AC, Pajonk GM (2002) Chemistry of Aerogels and Their Applications. Chem Rev 102(11):4243–4266. doi:10.1021/cr0101306

    Article  Google Scholar 

  • Pircher N, Veigel S, Aigner N, Nedelec JM, Rosenau T, Liebner F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydr Polym 111:505–513. doi:10.1016/j.carbpol.2014.04.029

    Article  Google Scholar 

  • Pour G, Beauger C, Rigacci A, Budtova T (2015) Xerocellulose: lightweight, porous and hydrophobic cellulose prepared via ambient drying. J Mater Sci 50(13):4526–4535. doi:10.1007/s10853-015-9002-4

    Article  Google Scholar 

  • Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F (2013) Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. J Mater Chem A 1(27):7963. doi:10.1039/c3ta11198a

    Article  Google Scholar 

  • Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F, Zhang T (2014) Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Adv 4(57):30453. doi:10.1039/c4ra02752c

    Article  Google Scholar 

  • Sequeira S, Evtuguin DV, Portugal I (2009) Preparation and properties of cellulose/silica hybrid composites. Polym Compos 30(9):1275–1282

    Article  Google Scholar 

  • Stamm AJ, Tarkow H (1950) Penetration of cellulose fibers. J Phys Colloid Chemistry 54(6):745–753

    Article  Google Scholar 

  • Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19(2):393–399. doi:10.1007/s10570-012-9651-2

    Article  Google Scholar 

  • Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergstrom L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10(3):277–283. doi:10.1038/nnano.2014.248

    Article  Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24(9):3141–3145. doi:10.1007/BF01139032

    Article  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761. doi:10.1002/adem.200400097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai M. Duong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duong, H.M., Nguyen, S.T. (2016). Nanocellulose Aerogels as Thermal Insulation Materials. In: Pacheco Torgal, F., Buratti, C., Kalaiselvam, S., Granqvist, CG., Ivanov, V. (eds) Nano and Biotech Based Materials for Energy Building Efficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-27505-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27505-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27503-1

  • Online ISBN: 978-3-319-27505-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics