Skip to main content

Performance of Semi-transparent Photovoltaic Façades

  • Chapter
  • First Online:
Nano and Biotech Based Materials for Energy Building Efficiency
  • 2218 Accesses

Abstract

This chapter shows the potential of the architectural integration of semi-transparent photovoltaic (STPV) systems for improving the energy efficiency of buildings. The research presented focuses on developing a methodology able to quantify the building energy demand reduction provided by these novel constructive solutions. At the same time, the design parameters of the STPV solution are analyzed to establish which of them have the greatest impact on the global energy balance of the building, and therefore which have to be carefully defined in order to optimize the building operation. In summary, this work contributes to the understanding of the interaction between STPV systems and buildings, providing both components manufacturers and construction technicians, valuable information on the energy-saving potential of these new construction systems and defining the appropriate design parameters to achieve efficient solutions in both new and retrofitting projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

10:

STPV element with a normal visible transmittance of about 10 %

20:

STPV element with a normal visible transmittance of about 20 %

30:

STPV element with a normal visible transmittance of about 30 %

40:

STPV element with a normal visible transmittance of about 40 %

a-Si:

Amorphous silicon

BAPV:

Building added/adopted/attached photovoltaic

BIPV:

Building-integrated photovoltaic

BOE:

Boletín Oficial del Estado—Official Bulletin of the State

CED:

Cooling energy demand

CENELEC:

European Commission for Electrotechnical Standardization

CMP:

Commercialization margin price

COP:

Coefficient of performance

c-Si:

Crystalline silicon

CTE:

Spanish technical building code

DGI:

Daylighting glare index

EBI:

Energy balance index

EPC:

Electricity production cost

g-value:

Solar factor

HED:

Heating energy demand

HVAC:

Heating, ventilating, and air conditioning

IEA:

International energy agency

IEA-SHC:

IEA-Solar Heating and Cooling Program

IGDB:

International glazing database

LBNL:

Lawrence Berkeley National Laboratory

LED:

Lighting energy demand

NIR:

Near infrared

NPV:

Net present value

PEG:

Photovoltaic energy generation

PV:

Photovoltaic

RG:

Reference glass

SHGC:

Solar heat gain coefficient

STC:

Standard test condition

STPV:

Semi-transparent photovoltaic

UV:

Ultraviolet

U-value:

Thermal transmittance

Vis:

Visible

WWR:

Window-to-wall ratio

References

  • Annunziata E, Frey M, Rizzi F (2013) Towards nearly zero-energy buildings: the state-of-art of national regulations in Europe. Energy 57:125–133. doi:10.1016/j.energy.2012.11.049

    Article  Google Scholar 

  • Asdrubali F, Bonaut M, Battisti M, Venegas M (2008) Comparative study of energy regulations for buildings in Italy and Spain. Energy Build 40:1805–1815. doi:10.1016/j.enbuild.2008.03.007

    Article  Google Scholar 

  • Bahaj AS, James PAB, Jentsch MF (2008) Potential of emerging glazing technologies for highly glazed buildings in hot arid climates. Energy Build 40:720–731. doi:10.1016/j.enbuild.2007.05.006

    Article  Google Scholar 

  • Ban-Weiss G, Wray C, Delp W, Ly P, Akbari H, Levinson R (2013) Electricity production and cooling energy savings from installation of a building-integrated photovoltaic roof on an office building. Energy Build 56:210–220. doi:10.1016/j.enbuild.2012.06.032

    Article  Google Scholar 

  • Bodart M, De Herde A (2002) Global energy savings in offices buildings by the use of daylighting. Energy Build 34:421–429

    Article  Google Scholar 

  • BOE (2014) Orden IET/107/2014, de 31 de enero, por la que se revisan los peajes de acceso de energía eléctrica para 2014

    Google Scholar 

  • BOE (2011) Real Decreto 1699/2011, de 18 de noviembre, por el que se regula la conexión a red de instalaciones de producción de energía eléctrica de pequeña potencia

    Google Scholar 

  • Buratti C, Moretti E (2013a) Silica nanogel for energy-efficient windows. In: Pacheco-Torgal F, Diamanti MV, Nazari A, Granqvist C-G (eds) Nanotechnology in eco-efficient construction. Woodhead Publishing Limited, Cambridge, pp. 207–235. doi:10.1533/9780857098832.2.207

    Google Scholar 

  • Buratti C, Moretti E (2013b) Nanogel windows. In: Pacheco-Torgal F, Mistretta M, Kaklauskas A, Granqvist C-G, Cabeza L-F (eds) Nearly zero energy building refurbishment. Springer, London. doi:10.1007/9781447155232

  • CENELEC, 2012. Photovoltaics in buildings - DRAFT prEN 50583

    Google Scholar 

  • Cerón I, Caamaño-Martín E, Neila FJ (2013) “State-of-the-art” of building integrated photovoltaic products. Renew Energy 58:127–133. doi:10.1016/j.renene.2013.02.013

    Article  Google Scholar 

  • Chen F, Wittkopf SK (2012) Summer condition thermal transmittance measurement of fenestration systems using calorimetric hot box. Energy Build 53:47–56. doi:10.1016/j.enbuild.2012.07.005

    Article  Google Scholar 

  • Chen F, Wittkopf SK, Khai Ng P, Du H (2012) Solar heat gain coefficient measurement of semi-transparent photovoltaic modules with indoor calorimetric hot box and solar simulator. Energy Build 53:74–84. doi:10.1016/j.enbuild.2012.06.005

    Article  Google Scholar 

  • Chow TT, Lin Z, He W, Chan ALS, Fong KF (2006) Use of ventilated solar screen window in warm climate. Appl Therm Eng 26:1910–1918. doi:10.1016/j.applthermaleng.2006.01.026

    Article  Google Scholar 

  • Chow TT, He W, Ji J (2007) An experimental study of façade-integrated photovoltaic/water-heating system. Appl Therm Eng 27:37–45. doi:10.1016/j.applthermaleng.2006.05.015

    Article  Google Scholar 

  • Chow T-T, Qiu Z, Li C (2009) Potential application of “see-through” solar cells in ventilated glazing in Hong Kong. Sol Energy Mater Sol Cells 93:230–238. doi:10.1016/j.solmat.2008.10.002

    Article  Google Scholar 

  • Chow T, Li C, Lin Z (2010) Innovative solar windows for cooling-demand climate. Sol Energy Mater Sol Cells 94:212–220. doi:10.1016/j.solmat.2009.09.004

    Article  Google Scholar 

  • COAATGU (2015) Precio de la Construcción Centro (WWW Document). www.preciocentro.com. Accessed 20 Mar 2015

  • Corgnati SP, Perino M, Serra V (2007) Experimental assessment of the performance of an active transparent façade during actual operating conditions. Sol Energy 81:993–1013. doi:10.1016/j.solener.2006.12.004

    Article  Google Scholar 

  • Crawley DB, Lawrie LK, Winkelmann FC, Buhl WF, Huang YJ, Pedersen CO, Strand RK, Liesen RJ, Fisher DE, Witte MJ, Glazer J (2001) EnergyPlus: creating a new-generation building energy simulation program. Energy Build 33:319–331

    Article  Google Scholar 

  • Creara (2015) PV grid parity monitor—commercial sector

    Google Scholar 

  • CTE (2013) Código Técnico de la Edificación. Boletín Oficial del Estado, BOE 12/09/13, Madrid, Spain

    Google Scholar 

  • CYPE Ingenieros (2015) Generador de precios de la construcción

    Google Scholar 

  • de Boer BJ, van Helden WGJ (2001) PV MOBI, PV modules optimised for building integration. In: 9th international conference on solar energy in high latitudes. Northsun, Leiden, The Netherlands

    Google Scholar 

  • Denton JC, Rakopoulos CD, Tsatsaronis G, Frangopoulos CA, Stegou-Sagia A, Antonopoulos K, Angelopoulou C, Kotsiovelos G (2007) The impact of glazing on energy consumption and comfort. Energy Convers Manag 48:2844–2852

    Article  Google Scholar 

  • Designbuilder (2014) Designbuilder—Version 3.2.0.073

    Google Scholar 

  • Dubois M-C, Blomsterberg Å (2011) Energy saving potential and strategies for electric lighting in future North European, low energy office buildings: a literature review. Energy Build 43:2572–2582. doi:10.1016/j.enbuild.2011.07.001

    Article  Google Scholar 

  • Eicker U, Fux V, Infield D, Mei L, Vollmer K (1999) Thermal performance of building integrated ventilated PV facades. Proceedings of the ISES 1999 Solar World

    Google Scholar 

  • European Commission (2010) Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Off J Eur Union L153:13

    Google Scholar 

  • European Committee for Standardization (2011a) EN 410:2011 glass in building. Determination of luminous and solar characteristics of glazing

    Google Scholar 

  • European Committee for Standardization (2011b) EN 673:2011 glass in building. Determination of thermal transmittance (U value). Calculation method. EN 6732011

    Google Scholar 

  • FIVE (2015) Instituto Valenciano de la Edificación (WWW document). www.five.es

  • Fung TYY, Yang H (2008) Study on thermal performance of semi-transparent building-integrated photovoltaic glazings. Energy Build 40:341–350. doi:10.1016/j.enbuild.2007.03.002

    Article  Google Scholar 

  • Gan G (2009) Effect of air gap on the performance of building-integrated photovoltaics. Energy 34:913–921. doi:10.1016/j.energy.2009.04.003

    Article  Google Scholar 

  • German Solar Energy Society (2013) Planning and installing photovoltaic systems. A guide for installers, architects and engineers, 3rd edn. Routledge, London

    Google Scholar 

  • Gil-Lopez T, Gimenez-Molina C (2013) Influence of double glazing with a circulating water chamber on the thermal energy savings in buildings. Energy Build 56:56–65. doi:10.1016/j.enbuild.2012.10.008

    Article  Google Scholar 

  • GmbH E (2011) POLIS—solar urban planning—The National state of the art in Germany

    Google Scholar 

  • Guardo A, Coussirat M, Egusquiza E, Alavedra P, Castilla R (2009) A CFD approach to evaluate the influence of construction and operation parameters on the performance of active transparent façades in mediterranean climates. Energy Build 41:534–542. doi:10.1016/j.enbuild.2008.11.019

    Google Scholar 

  • Han J, Lu L, Peng J, Yang H (2013) Performance of ventilated double-sided PV façade compared with conventional clear glass façade. Energy Build 56:204–209. doi:10.1016/j.enbuild.2012.08.017

    Article  Google Scholar 

  • Han J, Lu L, Yang H (2009) Thermal behavior of a novel type see-through glazing system with integrated PV cells. Build Environ 44:2129–2136. doi:10.1016/j.buildenv.2009.03.003

    Article  Google Scholar 

  • He W, Zhang YX, Sun W, Hou JX, Jiang QY, Ji J (2011) Experimental and numerical investigation on the performance of amorphous silicon photovoltaics window in East China. Build Environ 46:363–369. doi:10.1016/j.buildenv.2010.07.030

    Article  Google Scholar 

  • Hien WN, Liping W, Chandra AN, Pandey AR, Xiaolin W (2005) Effects of double glazed facade on energy consumption, thermal comfort and condensation for a typical office building in Singapore. Energy Build 37:563–572

    Article  Google Scholar 

  • IEA-SHC Task 41 (2012a) Solar energy systems in architecture—integration criteria and guidelines

    Google Scholar 

  • IEA-SHC Task 41 (2012b) Solar design of buildings for architects: review of solar design tools—Subtask B—Methods and Tools for Solar Design

    Google Scholar 

  • Inanici MN, Demirbilek FN (2000) Thermal performance optimization of building aspect ratio and south window size in five cities having different climatic characteristics of Turkey. Build Environ 35:41–52

    Article  Google Scholar 

  • Infield D, Eicker U, Fux V, Mei L, Schumacher J (2006) A simplified approach to thermal performance calculation for building integrated mechanically ventilated PV facades. Build Environ 41:893–901. doi:10.1016/j.buildenv.2005.04.010

    Article  Google Scholar 

  • Iqbal I, Al-Homoud MS (2007) Parametric analysis of alternative energy conservation measures in an office building in hot and humid climate. Build Environ 42:2166–2177

    Article  Google Scholar 

  • ITEC (2015) Instituto de Tecnología de la Construcción (WWW Document). http://itec.es/. Accessed 20 Mar 2015

  • Kapsis K, Athienitis AK (2015) A study of the potential benefits of semi-transparent photovoltaics in commercial buildings. Sol Energy 115:120–132. doi:10.1016/j.solener.2015.02.016

    Article  Google Scholar 

  • Köppen W (1936) Das geographische system der klimate. Borntrager Verlag, Berlin

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263. doi:10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Kreith F, Goswami DY (2004) The CRC handbook of mechanical engineering, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • LBNL-CGDB (2014) Complex glazing database (WWW document). http://windowoptics.lbl.gov/data/cgdb. Accessed 14 May 2014

  • LBNL-COMFEN (2014) COMFEN—version 4.1.25 (WWW document). http://windows.lbl.gov/software/comfen/comfen.html. Accessed 14 May 2014

  • LBNL-IGDB (2014) International glazing database (WWW document). http://windowoptics.lbl.gov/data/igdb. Accessed 14 May 2014

  • LBNL-OPTICS (2014) Optics—version 5.1 (WWW document). http://windows.lbl.gov/software/Optics/optics.html. Accessed 14 May 2014

  • LBNL-WINDOW (2014) Window—version 6.3.26.0 (WWW document). http://windows.lbl.gov/software/window/window.html. Accessed 14 May 2014

  • Li DHW, Lam TNT, Chan WWH, Mak AHL (2009) Energy and cost analysis of semi-transparent photovoltaic in office buildings. Appl Energy 86:722–729. doi:10.1016/j.apenergy.2008.08.009

    Article  Google Scholar 

  • Li DHW, Yang L, Lam JC (2013) Zero energy buildings and sustainable development implications—a review. Energy 54:1–10. doi:10.1016/j.energy.2013.01.070

    Article  Google Scholar 

  • Lu L, Law KM (2013) Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong. Renew Energy 49:250–254. doi:10.1016/j.renene.2012.01.021

    Article  Google Scholar 

  • Mardaljevic J, Heschong L, Lee E (2009) Daylight metrics and energy savings. Light Res Technol 41:261–283. doi:10.1177/1477153509339703

    Article  Google Scholar 

  • Martín Chivelet N, Fernandez Solla I (2007) La Envolvente fotovoltaica en la arquitectura: criterios de diseño y aplicaciones. Editorial Reverté

    Google Scholar 

  • Miyazaki T, Akisawa A, Kashiwagi T (2005) Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renew Energy 30:281–304. doi:10.1016/j.renene.2004.05.010

    Article  Google Scholar 

  • Montoro DF, Vanbuggenhout P, Ciesielska J (2011) Building integrated photovoltaics: an overview of the existing products and their fields of application

    Google Scholar 

  • Nabil A, Mardaljevic J (2006) Useful daylight illuminances: a replacement for daylight factors. Energy Build 38:905–913. doi:10.1016/j.enbuild.2006.03.013

    Article  Google Scholar 

  • Ng PK, Mithraratne N, Kua HW (2013) Energy analysis of semi-transparent BIPV in Singapore buildings. Energy Build 66:274–281. doi:10.1016/j.enbuild.2013.07.029

    Article  Google Scholar 

  • Oliver M, Jackson T (2001) Energy and economic evaluation of building-integrated photovoltaics. Energy 26:431–439. doi:10.1016/S0360-5442(01)00009-3

    Article  Google Scholar 

  • Olivieri L (2015) Integral energy behaviour of photovoltaic semi-transparent glazing elements for building integration. Ph.D thesis, Universidad Politécnica de Madrid, Madrid, Spain. http://oa.upm.es/37242/

  • Olivieri L, Caamaño-Martín E, Moralejo-Vázquez FJ, Martín-Chivelet N, Olivieri F, Neila-Gonzalez FJ (2014a) Energy saving potential of semi-transparent photovoltaic elements for building integration. Energy 76:572–583. doi:10.1016/j.energy.2014.08.054

    Article  Google Scholar 

  • Olivieri L, Caamaño-Martin E, Olivieri F, Neila J (2014b) Integral energy performance characterization of semi-transparent photovoltaic elements for building integration under real operation conditions. Energy Build 68:280–291. doi:10.1016/j.enbuild.2013.09.035

    Article  Google Scholar 

  • Olivieri L, Frontini F, Polo-López C, Pahud D, Caamaño-Martín E (2015) G-value indoor characterization of semi-transparent photovoltaic elements for building integration: new equipment and methodology. Energy Build 101:84–94. doi:10.1016/j.enbuild.2015.04.056

    Article  Google Scholar 

  • Pagliaro M, Ciriminna R, Palmisano G (2010) BIPV: merging the photovoltaic with the construction industry. Prog Photovoltaics Res Appl 18:61–72. doi:10.1002/pip.920

    Article  Google Scholar 

  • Park KE, Kang GH, Kim HI, Yu GJ, Kim JT (2010) Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module. Energy 35:2681–2687. doi:10.1016/j.energy.2009.07.019

    Article  Google Scholar 

  • Peng J, Lu L, Yang H (2013) An experimental study of the thermal performance of a novel photovoltaic double-skin facade in Hong Kong. Sol Energy 97:293–304. doi:10.1016/j.solener.2013.08.031

    Article  Google Scholar 

  • Pérez-Lombard L, Ortiz J, González R, Maestre IR (2009) A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes. Energy Build 41:272–278. doi:10.1016/j.enbuild.2008.10.004

    Article  Google Scholar 

  • Petter Jelle B, Breivik C, Drolsum Røkenes H (2012) Building integrated photovoltaic products: a state-of-the-art review and future research opportunities. Sol Energy Mater Sol Cells 100:69–96. doi:10.1016/j.solmat.2011.12.016

    Article  Google Scholar 

  • Photon International (2014a) Photon international solar modules database (WWW document). http://www.photon.info/photon_site_db_solarmodule_en.photon. Accessed 14 May 2014

  • Photon International (2014b) Photon international solar inverters database (WWW document). http://www.photon.info/photon_site_db_wechselrichter_en.photon. Accessed 14 May 2014

  • PVsyst (2014) PVsyst—version 5.55 (WWW document). http://www.pvsyst.com. Accessed 14 May 2014

  • Quesada G, Rousse D, Dutil Y, Badache M, Hallé S (2012) A comprehensive review of solar facades. Transparent and translucent solar facades. Renew Sustain Energy Rev 16:2643–2651. doi:10.1016/j.rser.2012.02.059

    Article  Google Scholar 

  • Radhi H (2010) Energy analysis of façade-integrated photovoltaic systems applied to UAE commercial buildings. Sol Energy 84:2009–2021. doi:10.1016/j.solener.2010.10.002

    Article  Google Scholar 

  • Reinhart CF, Wienold J (2011) The daylighting dashboard—a simulation-based design analysis for daylit spaces. Build Environ 46:386–396. doi:10.1016/j.buildenv.2010.08.001

    Article  Google Scholar 

  • Roberts S, Guariento N (2009) Building integrated photovoltaics: a handbook. Birkhauser Verlag AG, Basel

    Google Scholar 

  • Robinson L, Athienitis A (2009) Design methodology for optimization of electricity generation and daylight utilization for façade with semi-transparent photovoltaics. In: Proceedings of building simulation 2009. Glasgow, Scotland, pp. 811–818

    Google Scholar 

  • Song J-H, An Y-S, Kim S-G, Lee S-J, Yoon J-H, Choung Y-K (2008) Power output analysis of transparent thin-film module in building integrated photovoltaic system (BIPV). Energy Build 40:2067–2075. doi:10.1016/j.enbuild.2008.05.013

    Article  Google Scholar 

  • UBS (2014.) Global utilities, autos & chemicals. Will solar, batteries and electric cars re-shape the electricity system?

    Google Scholar 

  • Van Dijk HAL (2001a) The European project REVIS, daylighting products with redirecting visual properties. In: Proceedings of NorthSun conference

    Google Scholar 

  • Van Dijk HAL (2001b) Reference office for thermal, solar and lighting calculations. Performance of solar facade components. IEA-SHC Tak27, IEA SHC Task27. Delft, The Netherlands

    Google Scholar 

  • Voss K, Musall E (2012) Net zero energy buildings—international projects of carbon neutrality in buildings. Detail Green Books

    Google Scholar 

  • Wang Y, Tian W, Ren J, Zhu L, Wang Q (2006) Influence of a building’s integrated-photovoltaics on heating and cooling loads. Appl Energy 83:989–1003. doi:10.1016/j.apenergy.2005.10.002

    Article  Google Scholar 

  • Wienold J, Christoffersen J (2006) Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy Build 38:743–757. doi:10.1016/j.enbuild.2006.03.017

    Article  Google Scholar 

  • Wong PW, Shimoda Y, Nonaka M, Inoue M, Mizuno M (2008) Semi-transparent PV: thermal performance, power generation, daylight modelling and energy saving potential in a residential application. Renew Energy 33:1024–1036. doi:10.1016/j.renene.2007.06.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Olivieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olivieri, L. (2016). Performance of Semi-transparent Photovoltaic Façades. In: Pacheco Torgal, F., Buratti, C., Kalaiselvam, S., Granqvist, CG., Ivanov, V. (eds) Nano and Biotech Based Materials for Energy Building Efficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-27505-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27505-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27503-1

  • Online ISBN: 978-3-319-27505-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics