Skip to main content

Weighted Estimates for the Discrete Hilbert Transform

  • Chapter
  • First Online:
Methods of Fourier Analysis and Approximation Theory

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The Paley-Wiener theorem states that the Hilbert transform of an integrable odd function, which is monotone on \(\mathbb{R}_{+}\), is integrable. In this paper we prove weighted analogs of this theorem for sequences and their discrete Hilbert transforms under the assumption of general monotonicity for an even/odd sequence.

Mathematics Subject Classification (2000). Primary 42A50, Secondary 40A99, 26A48, 44A15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Andersen, Weighted norm inequalities for Hilbert transforms and conjugate functions of even and odd functions. Proc. Am. Math. Soc. 56(1), 99–107 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Andersen, Inequalities with weights for discrete Hilbert transforms. Can. Math. Bull. 20, 9–16 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Eoff, The discrete nature of the Paley-Wiener spaces. Proc. Am. Math. Soc. 123, 505–512 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. T.M. Flett, Some theorems on odd and even functions. Proc. Lond. Math. Soc. (3) 8, 135–148 (1958)

    Google Scholar 

  5. G.H. Hardy, J.E. Littlewood, Some more theorems concerning Fourier series and Fourier power series. Duke Math. J. 2, 354–382 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  6. S.I. Izumi, T. Tsuchikura, Absolute convergence of trigonometric expansions. Tôhoku Math. J. 7, 243–251 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-P. Kahane, SĂ©ries de Fourier Absolument Convergentes (Springer, Berlin, 1970)

    MATH  Google Scholar 

  8. F.W. King, Hilbert Transforms. Encyclopedia of Mathematics and Its Applications, vol. 1 (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  9. H. Kober, A note on Hilbert’s operator. Bull. Am. Math. Soc. 48(1), 421–426 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Liflyand, Sharpness of Wiener’s theorem on the Fourier transform of a compactly supported function, in Theory of Mappings and Approximation of Functions (Naukova dumka, Kiev, 1989), pp. 87–95 (Russian)

    Google Scholar 

  11. E. Liflyand, S. Tikhonov, Weighted Paley-Wiener theorem on the Hilbert transform. C.R. Acad. Sci. Paris, Ser. I 348, 1253–1258 (2010)

    Google Scholar 

  12. E. Liflyand, S. Tikhonov, A concept of general monotonicity and applications. Math. Nachr. 284, 1083–1098 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. R.E.A.C. Paley, N. Wiener, Notes on the theory and application of Fourier transform, note II. Trans. Am. Math. Soc. 35, 354–355 (1933)

    MathSciNet  MATH  Google Scholar 

  14. M. Plancherel, G. Pólya, Fonctions entières et intégrales de Fourier multiples. Commun. Math. Helvetici I 9, 224–248 (1937); II 10, 110–163 (1938)

    Google Scholar 

  15. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, 1993)

    MATH  Google Scholar 

  16. V. Stepanov, S. Tikhonov, Two-weight inequalities for the Hilbert transform on monotone functions. Doklady RAN 437, 606–608 (2011) (Russian). Engl. Transl. Dokl. Math. 83, 241–242 (2011)

    Google Scholar 

  17. V. Stepanov, S. Tikhonov, Two power-weight inequalities for the Hilbert transform on the cones of monotone functions. Complex Var. Ellipt. Equat. 56, 1039–1047 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Tikhonov, Trigonometric series with general monotone coefficients. J. Math. Anal. Appl. 326, 721–735 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. R.M. Trigub, E.S. Belinsky, Fourier Analysis and Approximation of Functions (Kluwer, London, 2004)

    Book  Google Scholar 

  20. N. Wiener, The Fourier Integral and Certain of Its Applications (Dover, New York, 1932)

    Google Scholar 

  21. A. Zygmund, Some points in the theory of trigonometric and power series. Trans. Am. Math. Soc. 36, 586–617 (1934)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Liflyand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liflyand, E. (2016). Weighted Estimates for the Discrete Hilbert Transform. In: Ruzhansky, M., Tikhonov, S. (eds) Methods of Fourier Analysis and Approximation Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-27466-9_5

Download citation

Publish with us

Policies and ethics