Skip to main content

Optimization Control Problems for Systems Described by Elliptic Variational Inequalities with State Constraints

  • Chapter
  • First Online:
Methods of Fourier Analysis and Approximation Theory

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1474 Accesses

Abstract

The control system described by variational inequality is considered. It is approximated by the system described by a nonlinear equation with using the penalty method. The convergence of the approximate method is proved. The necessary conditions of optimality for approximate optimization control problem are obtained. The optimal control for the approximate optimization problem is chosen as an approximate solution of the initial problem.

Mathematics Subject Classification (2000). Primary 49K20, Secondary 35J85

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Rendiconti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali 834(2), 138–142 (1963)

    MathSciNet  MATH  Google Scholar 

  2. G. Duvaut, J.-L. Lions, Les in \(\acute{e}\) quations en m \(\acute{e}\) canique et en physique (Dunod, Paris, 1972)

    Google Scholar 

  3. D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications (Academic, New York, 1980)

    MATH  Google Scholar 

  4. R. Glowinski, J.-L. Lions, R. Tr\(\acute{e}\) molier, Numerical Analysis of Variational Inequalities (North Holland, Amsterdam, 1981)

    Google Scholar 

  5. C. Baiocchi, A. Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems (Wiley, New York, 1984)

    MATH  Google Scholar 

  6. J.-L. Lions, Quelques M \(\acute{e}\) thods de resolution des probl \(\grave{e}\) mes aux limites Non lin \(\grave{e}\) aires (Dunod, Gautier-Villars, Paris, 1969)

    Google Scholar 

  7. V. Barbu, Optimal Control of Variational Inequalities. Research Notes in Mathematics, vol. 100 (Pitman, Boston, 1984)

    Google Scholar 

  8. Z.X. He, State constrained control problems governed by variational inequalities. SIAM J. Control Optim. 25, 1119–1145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems. Lecture Notes in Mathematics, vol. 1459 (Springer, Berlin, 1990)

    Google Scholar 

  10. J. Bonnans, E. Casas, An extension of Pontryagin’s principle for state-constrained optimal control of semilinear elliptic equations and variational inequalities. SIAM J. Control Optim. 33, 274–298 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Wang, Y. Zhao, W. Li, Some optimal control problems governed by elliptic variational inequalities with control and state constraint on the boundary. J. Optim. Theory Appl. 106, 627–655 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Ye, Q. Chen, Optimal control of the obstacle in a quasilinear elliptic variational inequality. J. Math. Anal. Appl. 294, 258–272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Q. Chen, D. Chu, R.C.E. Tan, Optimal control of obstacle for quasi-linear elliptic variational bilateral problems. SIAM J. Control Optim. 44, 1067–1080 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y.Y. Zhou, X.Q. Yang, K.L. Teo, The existence results for optimal control problems governed by a variational inequality. J. Math. Anal. Appl. 321, 595–608 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Serovajsky, State-constrained optimal control of nonlinear elliptic variational inequalities. Optim. Lett. 8(7), 2041–2051 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Neittaanmaki, D. Tiba, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms, and Applications (Marcel Dekker, New York, 1994)

    MATH  Google Scholar 

  17. D.R. Adams, S. Lenhart, Optimal control of the obstacle for a parabolic variational inequality. J. Math. Anal. Appl. 268, 602–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Q. Chen, Optimal obstacle control problem for semilinear evolutionary bilateral variational inequalities. J. Math. Anal. Appl. 307, 677–690 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Warga, Optimal Control of Differential and Functional Equations (Academic, New York, 1972)

    MATH  Google Scholar 

  20. V. F. Krotov, Global Methods in Optimal Control Theory (Marcel Dekker, New York, 1996)

    MATH  Google Scholar 

  21. M.I. Sumin, Suboptimal control of a semilinear elliptic equation with state constraints. Izv. Vuzov 6, 33–44 (2000)

    MathSciNet  MATH  Google Scholar 

  22. J.-L. Lions, Contr \(\hat{o}\) le Optimal de syst \(\grave{e}\) mes Distributes Singuliers (Gautier-Villars, Paris, 1983)

    Google Scholar 

  23. A.D. Ioffe, V.M. Tihomirov, Extremal Problems Theory (Nauka, Moscow, 1974)

    MATH  Google Scholar 

  24. A.S. Matveev, V.A. Yakubivich, Abstract Theory of Optimal Control (St. Petersburg University, St. Petersburg, 1994)

    Google Scholar 

  25. K. Madani, G. Mastroeni, A. Moldovan, Constrained extremum problems with infinite-dimensional image: selection and necessary conditions. J. Optim. Theory Appl. 135, 37–53 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Michel, Necessary conditions for optimality of elliptic systems with positivity constraints on the state. SIAM J. Control Optim. 18, 91–97 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 33, 993–1006 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Arada, J.P. Raymond, State-constrained relaxed problems for semilinear elliptic equations J. Math. Anal. Appl. 223, 248–271 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. J.F. Bonnans, A. Hermant, Conditions d’optimalit\(\acute{e}\) du second ordre n\(\acute{e}\) cessaires ou suffisantes pour les probl\(\grave{e}\) mes de commande optimale avec une contrainte sur l’\(\acute{e}\) tat et une commande scalaires. C. R. Acad. Sci. Paris Ser. I. 343, 473–478 (2006)

    Google Scholar 

  30. A. R\(\ddot{o}\) sch, F. Tr\(\ddot{o}\) ltzsch. Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 17, 776–794 (2006)

    Google Scholar 

  31. A. R\(\ddot{o}\) sch, F. Tr\(\ddot{o}\) ltzsch, On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints. SIAM J. Control Optim. 46, 1098–1115 (2007)

    Google Scholar 

  32. E. Casas, J.C. Reyes, F. Tr\(\ddot{o}\) ltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19, 616–643 (2008)

    Google Scholar 

  33. R. Fletcher, Practical Methods of Optimization (Wiley, New York, 2000)

    Book  MATH  Google Scholar 

  34. J.F. Bonnans, J.C. Gilbert, C. Lemar\(\acute{e}\) chal, C. Sagastiz\(\acute{a}\) bal, Numerical Optimization: Theoretical and Practical Aspects. Universitext (Springer, Berlin, 2006)

    Google Scholar 

  35. C. Floudas, P. Pardalos (eds.), Encyclopedia of Optimization (Springer, Berlin, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Serovajsky PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Serovajsky, S. (2016). Optimization Control Problems for Systems Described by Elliptic Variational Inequalities with State Constraints. In: Ruzhansky, M., Tikhonov, S. (eds) Methods of Fourier Analysis and Approximation Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-27466-9_14

Download citation

Publish with us

Policies and ethics