Skip to main content

Order of Approximation of Besov Classes in the Metric of Anisotropic Lorentz Spaces

  • Chapter
  • First Online:
Methods of Fourier Analysis and Approximation Theory

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this work the sharp estimate of the order of approximation of the Besov classes \(B_{\mathbf{pr}(\mathbb{T}^{\mathbf{d}})}^{\boldsymbol{\alpha \theta }}\) in the metric of anisotropic Lorentz spaces \(L_{\boldsymbol{q\theta }(\mathbb{T}^{\mathbf{d}})}\) is obtained.

Mathematics Subject Classification (2010). Primary 41A46, 41A63, Secondary 42C40

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.D. Nursultanov, Interpolation properties of some anisotropic spaces and Hardy-Littlewood type inequalities. East J. Approx. 4(2), 243–275 (1998)

    MathSciNet  MATH  Google Scholar 

  2. E.D. Nursultanov, S.M. Nikol’skii’s inequality for different metrics, and properties of the sequence of norms of Fourier sums of a function in the Lorentz space. Proc. Steklov Inst. Math. 255(4), 185–202 (2006)

    Google Scholar 

  3. E.D. Nursultanov, Interpolation theorems for anisotropic function spaces and their applications. Dokl. Akad. Nauk 394(1), 22–25 (2004, in Russian)

    Google Scholar 

  4. G.A. Akishev, Approximation of function classes in spaces with mixed norm. Sbornik Math. 197(7–8), 1121–1144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bergh, J. L ofstr oom, Interpolation Spaces. An Introduction. (Springer, New York, 1976)

    Google Scholar 

  6. K.A. Bekmaganbetov, E.D. Nursultanov, Embedding theorems of anisotropic Besov spaces \(B_{\mathbf{pr}}^{\alpha }\mathbf{q}([0,2\pi )^{n})\). Izvestiya Math. 73(4), 655–668 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. K.I. Babenko, Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Sov. Math. Dokl. 1, 672–675 (1960)

    MathSciNet  MATH  Google Scholar 

  8. S.A. Teljakovskii, Some bounds for trigonometric series with quasi-convex coefficients. Math. Sb. (N.S.) 63, 426–444 (1964, in Russian)

    Google Scholar 

  9. B.S. Mitjagin, Approximation of functions in L p and C spaces on the torus. Math. Sb. (N.S.) 58, 397–414 (1962, in Russian)

    Google Scholar 

  10. Ja.S. Bugrov, Approximation of a class of functions with dominant mixed derivative. Mat. Sb. (N.S.) 64, 410–418 (1964, in Russian)

    Google Scholar 

  11. N.S. Nikol’skaya, Approximation of differentiable functions of several variables by Fourier sums in the L p -metric. Sib. Math. J. 15, 395–412 (1974)

    MathSciNet  MATH  Google Scholar 

  12. E.M. Galeev, Kolmogorov widths in the space \(\tilde{L}_{q}\) of the classes \(\tilde{W}_{p}^{\bar{\alpha }}\) and \(\tilde{H}_{p}^{\bar{\alpha }}\) of periodic functions of several variables. Math. USSR-Izvestiya 27(2), 219–237 (1986)

    Google Scholar 

  13. D. Dung, Approximation by trigonometric polynomials of functions of several variables on the torus. Math. USSR-Sbornik 59(1), 247–267 (1988)

    Article  MATH  Google Scholar 

  14. V.N. Temlyakov, Approximations of functions with bounded mixed derivative. Proc. Steklov Inst. Math. 178, 1–121 (1989)

    MathSciNet  Google Scholar 

  15. A.S. Romanyuk, Approximation of the Besov classes of periodic functions of several variables in a space L q . Ukr. Math. J. 43(10), 1297–1306 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. E.D. Nursultanov, N.T. Tleukhanova, On the approximate computation of integrals for functions in the spaces W p α([0, 1]n). Russ. Math. Surv. 55(6), 1165–1167 (2000)

    Google Scholar 

  17. K.A. Bekmaganbetov, About order of approximation of Besov classes in metric of anisotropic Lorentz spaces. Ufimsk. Mat. Zh. bf 1(2), 9–16 (2009, in Russian)

    Google Scholar 

  18. K. Bekmaganbetov, E. Orazgaliev, Embedding Theorems for Nikol’Skii-Besov Type Spaces. Inverse Problems: Modeling and Simulation - VI (Izmir University, 2012)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Committee of Science of the Ministry of Education and Science of Republic of Kazakhstan (Grant 0816/GF4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bekmaganbetov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bekmaganbetov, K.A. (2016). Order of Approximation of Besov Classes in the Metric of Anisotropic Lorentz Spaces. In: Ruzhansky, M., Tikhonov, S. (eds) Methods of Fourier Analysis and Approximation Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-27466-9_10

Download citation

Publish with us

Policies and ethics