Skip to main content

Low-Thrust Transfers Between Libration Point Orbits Without Explicit Use of Manifolds

  • Chapter
  • First Online:
Book cover Recent Advances in Celestial and Space Mechanics

Part of the book series: Mathematics for Industry ((MFI,volume 23))

Abstract

In this paper, we investigate the numerical computation of minimum-energy low-thrust transfers between Libration point orbits in the Circular Restricted Three-Body Problem. We develop a three-step methodology based on optimal control theory, indirect shooting methods and variational equations without using information from invariant manifolds. Numerical results are provided in the case of transfers between Lyapunov orbits around \(L_{1}\) and \(L_{2}\) in the Earth-Moon system demonstrating the efficiency of the developed approach for different values of the transfer duration leading to trajectories with one or two revolutions around the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farquhar RW, Muhonen DP, Newman CR, Heuberger HS (1980) Trajectories and orbital maneuvers for the first libration-point satellite. J Guidance Control Dyn 3(6):549–554

    Article  Google Scholar 

  2. Rodriguez-Canabal J, Hechler M (1989) Orbital aspects of the SOHO mission design. In: Teles, J (ed) AAS/NASA International Symposium, Greenbelt, MD, April 24–27 1989. Advances in the Astronautical Sciences, vol 69, pp 347–357. Univelt, San Diego, CA

    Google Scholar 

  3. Doyle D, Pilbratt G, Tauber J (2009) The herschel and planck space telescopes. Proc IEEE 97(8):1403–1411. doi:10.1109/JPROC.2009.2017106

    Article  Google Scholar 

  4. Broschart SB, Sweetser TH, Angelopoulos V, Folta C, Woodard MA (2012) ARTEMIS lunar orbit insertion and science orbit design through 2013. In: Astrodynamics specialists conference, Girdwood AK, 2 Aug 2011 Advances in the Astronautical Sciences Series, vol 142. Univelt, CA

    Google Scholar 

  5. Gardner JP, Mather JC, Clampin M, Doyon R, Greenhouse MA (2006) The James web telescope. Space Sci Rev 123(4):485–606. doi:10.1007/s11214-006-8315-7

    Article  Google Scholar 

  6. Farquhar RW, Kamel AA (1973) Quasi-periodic orbits about the translunar liberation point. Celest Mech Dyn Astron 7(4):458–473. doi:10.1007/BF01227511

    Article  MATH  Google Scholar 

  7. Grebow DJ, Ozimek MT, Howell KC (2008) Multibody orbit architectures for lunar South pole coverage. J Spacecr Rockets 45(2):344–358. doi:10.2514/1.28738

    Article  Google Scholar 

  8. Hill K, Parker J, Born GH, Demandante N (2012) A lunar \(L\) \(_{2}\) navigation, commnication, and gravity mission. In: AIAA/AAS astrodynamics specialist conference and Exhibit, Aug. 2006, Keystone, CO, Paper AIAA 2006–6662. http://ccar.colorado.edu/geryon/papers/Conference/AIAA-06-6662.pdf(2006). Accessed 20 Feb 2012

  9. Koon WS, Lo MW, Marsden JE, Ross SD (2000) Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(4):427–469. doi:10.1063/1.166509

    Article  MathSciNet  MATH  Google Scholar 

  10. Gómez G, Masdemont J (2000) Some zero cost transfers between libration point orbits. In: Kluever CA, Neta B, Hall CD, Hanson JM (eds) AAS/AIAA Spaceflight Mechanics Meeting, Clearwater, Florida, Jan 2000, Paper AAS 00–177. Advances in the Astronautical Sciences Series, vol. 105. Univelt, CA

    Google Scholar 

  11. Gómez G, Koon WS, Marsden JE, Masdemont J, Ross SD (2004) Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5):1571–1606. doi:10.1088/0951-7715/17/5/002

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis KE, Anderson RL, Scheeres DJ, Born GH (2011) Optimal transfers between unstable periodic orbits using invariant manifolds. Celest Mech Dyn Astron 109(3):241–264. doi:10.1007/s10569-010-9327-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Tantardini M, Fantino E, Ren Y, Pergola P, Gómez G (2010) Spacecraft trajectories to the \(L_{3}\) point of the Sun-Earth three-body problem. Celest Mech Dyn Astron 108(3):215–232. doi:10.1007/s10569-010-9299-x

    Article  MATH  Google Scholar 

  14. Howell KC, Hiday-Johnston LA (1994) Time-free transfers between libration-point orbits in the elliptic restricted problem. Acta Astronaut 32(4):245–254. doi:10.1016/0094-5765(94)90077-9

    Google Scholar 

  15. Nakamiya M, Yamakawa H, Scheeres DJ, Yoshikawa M (2010) Interplanetary transfers between halo orbits: connectivity between escape and capture trajectories. J Guidance Control Dyn 33(3):803–813. doi:10.2514/1.46446

    Article  Google Scholar 

  16. Lawden DF (1953) Minimal rocket trajectories. J Am Rocket Soc 23(6):360–367

    Article  Google Scholar 

  17. Lawden DF (1963) Optimal trajectories for space navigation. Butterworths & Co Publishers, London, pp 1–126

    MATH  Google Scholar 

  18. Mingotti G, Topputo F, Bernelli-Zazzera F (2011) Earth-Mars transfers with ballistic escape and low-thrust capture. Celest Mech Dyn Astron 110(2):169–188. doi:10.1007/s10569-011-9343-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Pergola P, Geurts K, Casaregola C, Andrenucci M (2009) Earth-Mars halo to halo low thrust manifold transfers. Celest Mech Dyn Astron 105(1–3):19–32. doi:10.1007/s10569-009-9205-6

    Google Scholar 

  20. Dellnitz M, Junge O, Post M, Thiere B (2006) On target for Venus–set oriented computation of energy efficient low thrust trajectories. Celest Mech Dyn Astron 95(1–4):357–370. doi:10.1007/s10569-006-9008-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Mingotti G, Topputo F, Bernelli-Zazzera F (2012) Efficient invariant-manifold, low-thrust planar trajectories to the Moon. Commun Nonlinear Sci Numer Simul 17(2):817–831. doi:10.1016/j.cnsns.2011.06.033

    Article  MathSciNet  MATH  Google Scholar 

  22. Tanaka K, Kawagushi J (2011) Low-thrust transfer between Jovian Moons using manifolds. In: Jah MK, Gua Y, Bowes AL, Lai PC (eds) AAS/AIAA Spaceflight Mechanics Meeting, New Orleans LA, Feb 13–17, 2011, Paper AAS 11–235. Advances in the Astronautical Sciences Series, vol 140. Univelt, CA (2011)

    Google Scholar 

  23. Ren Y, Pergola P, Fantino E, Thiere B (2012) Optimal low-thrust transfers between libration point orbits. Celest Mech Dyn Astron 112(1):1–21. doi:10.1007/s10569-011-9382-y

    Article  MathSciNet  Google Scholar 

  24. Stuart JR, Ozimek MT, Howell KC (2010) Optimal, low-thrust, path-constrained transfers between libration point orbits using invariant manifolds. In: Proceedings of the AIAA/AAS Astrodynamics specialists conference, Toronto, Canada, Aug 2–5, 2010, Paper AIAA 10–7831. https://engineering.purdue.edu/people/kathleen.howell.1/Publications/conferences/StuOziHow_10.pdf. Accessed 20 Feb 2012

  25. Ozimek MT, Howell KC (2010) Low-thrust transfers in the Earth-Moon system, including applications to libration point orbits. J Guidance Control Dyn 33(2):533–549. doi:10.2514/1.43179

    Article  Google Scholar 

  26. Senent J, Ocampo C, Capella A (2005) Low-thrust variable-specific-impulse transfers and guidance to unstable periodic orbits. J Guidance Control Dyn 28(2):280–290. doi:10.2514/1.6398

    Article  Google Scholar 

  27. Mingotti G, Topputo F, Bernelli-Zazzera F (2007) Combined optimal low-thrust and stable-manifold trajectories to the Earth-Moon halo orbits. Am Inst Phys Conf Proc 886:100–112. doi:10.1063/1.2710047

    MathSciNet  MATH  Google Scholar 

  28. Betts JT (1998) Survey of numerical methods for trajectory optimization. J Guidance Control Dyn 21(2):193–207

    Article  MATH  Google Scholar 

  29. Conway BA (2012) A survey of methods available for the numerical optimization of continuous dynamic systems. J Optim Theory Appl 152(2):271–306. doi:10.1007/s10957-011-9918-z

    Article  MathSciNet  MATH  Google Scholar 

  30. Masdemont J (2005) High order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn Syst 20(1):59–113. doi:10.1080/14689360412331304291

    Article  MathSciNet  MATH  Google Scholar 

  31. Szebehely VG (1967) Theory of orbits–the restricted problem of three bodies, pp. 8–100. Academic Press Inc., Harcourt Brace Jovanovich Publishers, Orlando, Florida

    Google Scholar 

  32. Pontryagin L (1961) Optimal regulation processes. Am Math Soc Transl 18:17–66

    MathSciNet  MATH  Google Scholar 

  33. Bryson AE, Ho YC (1975) Applied optimal control. Hemisphere Publishing Corporation, New York, pp 42–125

    Google Scholar 

  34. Anderson BD, Kokotovic PV (1987) Optimal control problems over large time intervals. Automatica 23(3):355–363. doi:10.1016/0005-1098(87)90008-2

    Article  MathSciNet  MATH  Google Scholar 

  35. Rao AV, Mease KD (1999) Dichotomic basis approach to solving hyper-sensitive optimal control problems. Automatica 35(4):633–642. doi:10.1016/S0005-1098(98)00161-7

    Article  MathSciNet  MATH  Google Scholar 

  36. Rao AV, Mease KD (2000) Eigenvector approximate dichotomic basis method for solving hyper-sensitive optimal control problems. Optimal Control Appl Methods 21(1):1–19. doi:10.1002/(SICI)1099-1514(200001/02)21:1<1:AID-OCA646>3.0.CO;2-V

    Article  MathSciNet  MATH  Google Scholar 

  37. Mease KD, Bharadwaj S, Iravanchy S (2003) Timescale analysis for nonlinear dynamical systems. J Guidance Control Dyn 26(2):318–330

    Article  Google Scholar 

  38. Bharadwaj, S., Mease, K.D.: A new invariance property of Lyapunov characteristic directions. In: Proceedings of the American Control Conference, vol. 6, pp. 3800–3804. American Automatic Control Council, Evanston, IL (1999)

    Google Scholar 

  39. Ardema MD (1983) Solution algorithms for non-linear singularly perturbed optimal control problems. Optimal Control Appl. Methods 4(4):283–302. doi:10.1002/oca.4660040403

    Article  MathSciNet  MATH  Google Scholar 

  40. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput. J. 7(4):308–313. doi:10.1093/comjnl/7.4.308

    Article  MATH  Google Scholar 

  41. Graichen K, Petit N (2008) Constructive methods for initialization and handling mixed state-input constraints in optimal control. J. Guidance, Control Dyn. 31(5):1334–1343. doi:10.2514/1.33870

    Google Scholar 

  42. Canalias E, Masdemont J (2006) Homoclinic and heteroclinic transfer trajectories between Lyapunov orbits in the Sun-Earth and Earth-Moon systems. Discret. Contin. Dyn. Syst.–Ser. A 14(2):261–279. doi:10.3934/dcds.2006.14.261

    Google Scholar 

  43. Powell MJD (1970) A hybrid method for nonlinear equations. In: Rabinowitz P (ed) Numerical Methods for Nonlinear Algebraic Equations. Gordon and Breach, New York, pp 87–114

    Google Scholar 

  44. NAG Fortran Library (2009) Mark 22. The Numerical Algorithms Group Ltd, Oxford, UK

    Google Scholar 

  45. Hairer E, NØrsett SP, Wanner G (1987) Solving ordinary differential equations I. Nonstiff Prob lems. Springer Series in Computational Mathematics, vol 8, pp 173–185. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The greatest thanks to my CNES colleague Elisabet Canalias for fruitful discussions and advices. I would like also to express my gratitude to Josep Masdemont and Gerard Gómez from the University of Barcelona for the FORTRAN codes implementing Lindstedt-Poincaré techniques, provided under a CNES contract in 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Epenoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Epenoy, R. (2016). Low-Thrust Transfers Between Libration Point Orbits Without Explicit Use of Manifolds. In: Bonnard, B., Chyba, M. (eds) Recent Advances in Celestial and Space Mechanics. Mathematics for Industry, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-27464-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27464-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27462-1

  • Online ISBN: 978-3-319-27464-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics