Skip to main content

Station Keeping Strategies for a Solar Sail in the Solar System

  • Chapter
  • First Online:
Recent Advances in Celestial and Space Mechanics

Part of the book series: Mathematics for Industry ((MFI,volume 23))

Abstract

In this paper we focus on the station keeping around an equilibrium point for a solar sail in the Earth-Sun system. The strategies that we present use the information on the dynamics of the system to derive the required changes on the sail orientation to remain close to an equilibrium point for a long time. We start by describing the main ideas when we consider the RTBP with the effect of the SRP as a model. Then we will see how to extend these ideas when we consider a more complex dynamical model which includes the gravitational attraction of the main bodies in the solar system. One of the goals of the paper is to check the robustness of the algorithms in a more realistic setting and study the effect of errors both in the position determination of the probe and in the orientation of the sail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.isas.jaxa.jp/e/enterp/missions/ikaros/index.shtml.

  2. 2.

    http://www.nasa.gov/mission_pages/smallsats/nanosaild.html.

  3. 3.

    http://sail.planetary.org/.

  4. 4.

    http://www.sunjammermission.com/AboutSunjammer.

  5. 5.

    http://www.srl.caltech.edu/ACE/.

  6. 6.

    DE405 JPL ephemerides: http://ssd.jpl.nasa.gov/?ephemerides#planets.

  7. 7.

    http://www.jspec.jaxa.jp/e/activity/ikaros.html.

  8. 8.

    http://www.nasa.gov/mission_pages/smallsats/nanosaild.html.

  9. 9.

    http://sail.planetary.org.

References

  1. Aliasi G, Mengali G, Quarta A (2011) Artificial equilibrium points for a generalized sail in the circular restricted three-body problem. Celest Mech Dyn Astron 110:343–368

    Article  MathSciNet  MATH  Google Scholar 

  2. Ceriotti M, McInnes C (2010) A near term pole-sitter using hybrid solar sail propulsion. In: Kezerashvili R (ed) Proceedings of the second international symposium on solar sailing, pp 163–169

    Google Scholar 

  3. Ceriotti M, McInnes C (2012) Natural and sail-displaced doubly-symmetric lagrange point orbits for polar coverage. Celest Mech Dyn Astron 114(1–2):151–180

    Article  MathSciNet  Google Scholar 

  4. Crawford J (1991) Introduction to bifurcation theory. Rev Modern Phys 64 (1991)

    Google Scholar 

  5. Dachwald B, Seboldt W, Macdonald M, Mengali G, Quarta A, McInnes C, Rios-Reyes L, Scheeres D, Wie B, Görlich M, et al (2005) Potential solar sail degradation effects on trajectory and attitude control. In: AIAA guidance, navigation, and control conference and exhibit, vol 6172

    Google Scholar 

  6. Farrés A (2009) Contribution to the dynamics of a solar sail in the earth-sun system. PhD thesis, Universitat de Barcelona

    Google Scholar 

  7. Farrés A, Jorba À (2008) Dynamical system approach for the station keeping of a solar sail. J Astronaut Sci 58(2):199–230

    Article  Google Scholar 

  8. Farrés A, Jorba À (2008) Solar sail surfing along families of equilibrium points. Acta Astronaut 63:249–257

    Article  Google Scholar 

  9. Farrés A. Jorba À (2010) On the high order approximation of the centre manifold for ODEs. Discrete Contin Dyn Syst Ser B (DCDS-B), 14:977–1000

    Google Scholar 

  10. Farrés A, Jorba À (2010) Periodic and quasi-periodic motions of a solar sail around the family \({SL}_1\) on the sun-earth system. Celest Mech Dyn Astron 107:233–253

    Article  MATH  Google Scholar 

  11. Farrés A, Jorba À (2010) Sailing between the earth and sun. In: Kezerashvili R (ed) Proceedings of the second international symposium on solar sailing, pp 177–182

    Google Scholar 

  12. Farrés A, Jorba À (2011) On the station keeping of a solar sail in the elliptic sun-earth system. Adv Space Res 48:1785–1796. doi:10.1016/j.asr.2011.02.004

    Article  Google Scholar 

  13. Farrés A, Jorba À (2014) Station keeping of a solar sail around a halo orbit. Acta Astronaut 94(1):527–539

    Article  Google Scholar 

  14. Farrés A, Matteo C (2012) Solar sail station keeping of high-amplitude vertical lyapunov orbits in the sun-earth system. In: Proceedings of the 63rd international astronautical congress, naples, campania, Italy

    Google Scholar 

  15. Forward RL (1990) Statite: a spacecraft that does not orbit. J Spacecraft 28(5):606–611

    Article  Google Scholar 

  16. Gómez G, Jorba À, Masdemont J, Simó C (2001) Dynamics and mission design near libration points—volume iii: advanced methods for collinear points, volume 4 of world scientific monograph series in mathematics. world scientific

    Google Scholar 

  17. Gómez G, Jorba À, Masdemont J, Simó C (2001) Dynamics and mission design near libration points—volume iv: advanced methods for triangular points, volume 5 of world scientific monograph series in mathematics. world scientific

    Google Scholar 

  18. Gómez G, Llibre J, Martínez R, Simó C (2001) Dynamics and mission design near libration points—volume i: fundamentals: the case of collinear libration points, volume 2 of world scientific monograph series in mathematics. world scientific

    Google Scholar 

  19. Heiligers J, Diedrich B, Derbes B, McInnes C (2008) Sunjammer : preliminary end-to-end mission design. In: Proceedings of the AIAA/AAS astrodynamics specialist conference, vol 2014

    Google Scholar 

  20. Jorba À, Simó C (1996) On quasiperiodic perturbations of elliptic equilibrium points. SIAM J Math Anal 27(6):1704–1737

    Article  MathSciNet  MATH  Google Scholar 

  21. Jorba A, Villanueva J (1997) On the persistence of lower dimensional invariant tori under quasi-periodic perturbations. J Nonlinear Sci 7:427–473. doi:10.1007/s003329900036

    Article  MathSciNet  MATH  Google Scholar 

  22. Lamb J, Roberts J (1998) Time-reversal symmetry in dynamical systems: a survey. Phys D 112:1–39

    Article  MathSciNet  MATH  Google Scholar 

  23. Lawrence D, Piggott S (2004) Solar sailing trajectory control for Sub-L1 stationkeeping. AIAA 2004–5014

    Google Scholar 

  24. Lisano M (2005) Solar sail transfer trajectory design and station keeping control for missions to Sub-L1 equilibrium region. In: 15th AAS/AIAA space flight mechanics conferece, colorado (2005). AAS paper 05–219

    Google Scholar 

  25. Macdonald M, McInnes C (2004) A near-term road map for solar sailing. In: 55th international astronautical congress, Vancouver, Canada

    Google Scholar 

  26. Macdonald M, McInnes C (2011) Solar sail science mission applications and advancement. Adv Space Res 48:1702–1716. doi:10.1016/j.asr.2011.03.018

    Article  Google Scholar 

  27. McInnes C (1999) Solar sailing: technology. Dynamics and Mission Applications, Springer-Praxis

    Book  Google Scholar 

  28. McInnes C, McDonald A, Simmons J, MacDonald E (1994) Solar sail parking in restricted three-body system. J Guidance Control Dyn 17(2):399–406

    Article  MATH  Google Scholar 

  29. McKay R, Macdonald M, Biggs J, McInnes C (2011) Survey of highly non-keplerian orbits with low-thrust propulsion. J Guidance Control Dyn 34(3):645–666. doi:10.2514/1.52133

    Article  Google Scholar 

  30. Rios-Reyes L, Scheeres D (2005) Robust solar sail trajectory control for large pre-launch modelling errors. In: 2005 AIAA guidance, navigation and control conference

    Google Scholar 

  31. Sevryuki M (1986) Reversible systems. Springer, Berlin

    Google Scholar 

  32. Szebehely V (1967) Theory of orbits. Academic Press, The restricted problem of three bodies

    Google Scholar 

  33. Yen C-WL (2004) Solar sail geostorm warning mission design. In: 14th AAS/AIAA space flight mechanics conference, Hawaii

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the MEC grant MTM2012-32541, the AGAUR grant 2014 SGR 1145 and the AGAUR postdoctoral fellowship Beatriu de Pinós (BP-B 00142-2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariadna Farrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farrés, A., Jorba, À. (2016). Station Keeping Strategies for a Solar Sail in the Solar System. In: Bonnard, B., Chyba, M. (eds) Recent Advances in Celestial and Space Mechanics. Mathematics for Industry, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-27464-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27464-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27462-1

  • Online ISBN: 978-3-319-27464-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics