Skip to main content

Nitric-Acid Cloud Formation in the Cold Antarctic Stratosphere—A Major Cause for the Springtime Ozone Hole

  • Chapter
  • First Online:
Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene

Part of the book series: SpringerBriefs on Pioneers in Science and Practice ((NOBEL,volume 50))

Abstract

Large depletions in stratospheric ozone were first reported by Farman et al. [1] at Halley Bay (76 °S), and confirmed by satellite observations [2]. Chubachi [3] gives a detailed account of ozone decreases and temperatures in the lower stratosphere during the spring of 1982 at 69 °S. There is now evidence [2] for annual declines in total ozone by ~6 and 3 % in regions of total ozone minima and maxima, respectively, from September to mid-October since the late 1970s. We propose here a chemical mechanism for the formation of the ozone hole. It involves removal of gaseous odd nitrogen by ion- and/or aerosol-catalysed conversion of N2O5 and ClONO2 to HNO3 vapour, followed by heteromolecular HNO3–H2O condensation, leading to HNO3–H2O aerosols. At an altitude of 17 km, these processes start at temperatures below 205 ± 5 K, well above the condensation temperature of pure water vapour. We propose that the absence of gaseous odd nitrogen and catalytic methane oxidation reactions driven by sunlight in early spring lead to large OH concentrations which rapidly convert HCl to ClOX. Catalytic reactions of ClOX and BrOX cause drastic ozone destructions and can account for the springtime ‘ozone hole’ first observed by Farman et al. [1]. By our model the depletion would be mainly due to emissions of industrial organic chlorine compounds. Arctic regions may also become affected. The depletion lasts while HNO3, but not HCl, is incorporated in the particles in the temperature range 205 ± 5 to 192 K.

This text was first published as: Paul J. Crutzen and Frank Arnoldt: “Letters to Nature” entitled “Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’”, in: Nature, vol. 324/18, 25 December 1986: 651–655. The permission to republish this artiucle was granted on 19 August 2015 by Ms. Claire Smith, Nature Publishing Group & Palgrave Macmillan, London, UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farman, J.C.; Gardiner, B.G.; Shanklin, J.D., 1985: in: Nature, 315: 207–210.

    Google Scholar 

  2. Stolarski, R.S.; et al.: in: Nature, 322: 808–811.

    Google Scholar 

  3. Chubachi, S., 1985: in: Kato, S. (Ed.): Handbook for MAP, vol 18 (Urbana: SCOSTEP, Univ. Illinois): 453–457.

    Google Scholar 

  4. McElroy, M.B.; Salawitch, R.J.; Wofsy, S.C.; Logan, J.A., 1986: in: Nature, 321: 759–762.

    Google Scholar 

  5. Solomon, S.; Garcia, R.R.; Rowland, F.S.; Wuebbles, D.J., 1986: in: Nature, 321: 755–758.

    Google Scholar 

  6. McCormick, M.P.; Steele, H.M.; Hamill, P.; Chu, W.P.; Swissler, T.J., 1982: in: Journal of the Atmospheric Sciences, 39: 1387–1397.

    Google Scholar 

  7. Steele, H.M.; Hamill, P.; McCormick, M.P.; Swissler, T.J., 1983: in: Journal of the Atmospheric Sciences, 40: 2055–2067.

    Google Scholar 

  8. Ferguson, E.E.; Fehsenfeld, F.C.; Albritton, D.L., 1979: in: Gas Phase Ion Chemistry, 1: 45–81 (Academic Press).

    Google Scholar 

  9. Bohringer, H.; Fahey, D.W.; Fehsenfeld, F.C.; Ferguson, E.E., 1983: in: Planetary and Space Science, 31: 185–191.

    Google Scholar 

  10. Arnold, F.; Crutzen, P.J., (in preparation).

    Google Scholar 

  11. Arnold, F., 1982: in: Proceedings of the DAHLEM Workshop on Atmospheric Chemistry (Ed. Goldberg, E. D.): 273.

    Google Scholar 

  12. Arnold, F.; Bührke, T., 1983: in: Nature, 301: 293.

    Google Scholar 

  13. Ferguson, E.E.; Arnold, F., 1981: in: Accounts of Chemical Research, 14: 327.

    Google Scholar 

  14. Baldwin, A.C.; Golden, D.M., 1979: in: Science, 206: 562–563.

    Google Scholar 

  15. Clavelin, J.L.; Mirabel, P., 1979: in: Annales de Chimie et de Physique, 76: 533–537.

    Google Scholar 

  16. Forsythe, W.R.; Giauque, F., 1942: in: Journal of the American Chemical Society, 64: 48–61.

    Google Scholar 

  17. Lau, Y.K.; Ikuta, S.; Kebarle, P., 1982: in: Journal of the American Chemical Society, 104: 1462–1469.

    Google Scholar 

  18. Austin, J.A.; Garcis, R.R.; Russell, J.M.; Solomon, S.; Tuck, A.F., 1986: in: Journal of Geophysical Research, 90: 5477–5485.

    Google Scholar 

  19. Evans, W.J.F.; McElroy, C.T.; Galbally, J.E., 1985: in: Geophysical Research Letters, 12: 825–828.

    Google Scholar 

  20. DeMore, W.B.; et al., 1985: in: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling (California: JPL Publication, NASA Jet Propulsion Laboratory): 85–37.

    Google Scholar 

  21. Crutzen, P.J.; Schmailzl, U., 1983: in: Manet. Space Science, 31: 1009–1032.

    Google Scholar 

  22. Labitzke, X., 1981: in: Journal of Geophysical Research, 86: 9665–9678.

    Google Scholar 

  23. Berg, W.W.; Crutzen, P.J.; Grahek, F.E.; Gitlin, S.N.; Sedlacek, W.A., 1980: in: Geophysical Research Letters, 7: 937–940.

    Google Scholar 

  24. Berg, W.W.; Heidt, L.E.; Pollock, W.; Sperry, P.D.; Cicerone, R.J., 1984: in: Geophysical Research Letters, 11: 429–432.

    Google Scholar 

  25. Molina, L.T.; Molina, M.: in: The Journal of Physical Chemistry (submitted).

    Google Scholar 

  26. McCormick, M.P.; Trepte, C.R.: in: Journal of Geophysical Research (submitted).

    Google Scholar 

  27. McKenzie, R.L.; Johnston, P.V., 1984: in: Geophysical Research Letters, 11: 73–75.

    Google Scholar 

  28. Shibasaki, K., 1985: in: Kato, S. (Ed.): Handbook for MAP 18: 506–509 (SCOSTER, Univ. Illinois, 1985).

    Google Scholar 

  29. World Meteorological Organization, 1985: Atmospheric Ozone 1985, WMO Rep. no. 16 (Geneva: WMO).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Crutzen, P.J., Arnoldt, F. (2016). Nitric-Acid Cloud Formation in the Cold Antarctic Stratosphere—A Major Cause for the Springtime Ozone Hole. In: Crutzen, P., Brauch, H. (eds) Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene. SpringerBriefs on Pioneers in Science and Practice(), vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-27460-7_6

Download citation

Publish with us

Policies and ethics