Skip to main content

Plant and Necrotrophic Fungal Pathogen Interaction: Mechanism and Mode of Action

  • Chapter
  • First Online:
Plant, Soil and Microbes

Abstract

Necrotrophic fungal pathogens cause major losses to fruit, vegetable, and cereal crops annually and the economic impact is more than that of diseases caused by biotrophic pathogens. These pathogens are devastating because they kill as they colonize through production of cell wall-degrading enzymes and phytotoxins, obtaining nutrients for growth and reproduction from the dead plant cells. They explore a wide variety of virulence strategies and based on these the pathogens are classified into host-specific and broad host-range necrotrophs. Plants are equipped with an immune system as a defense mechanism while the necrotrophic fungal pathogenic arsenal suppresses the immune responses for disease manifestation. Plant defense response involves the interplay of signaling molecules which include various phytohormones like jasmonic acid, ethylene, salicylic and abscisic acid which also serve as regulators of the immune response. Coordination at the transcriptional level of genes for the production of defense molecules including antimicrobial phytoalexins and pathogenesis-related proteins by transcription factors such as WRKY33 and ERF which are responsive to the signaling molecules has been observed. The roles for several important transcription factors already unveiled through studies of mutants in the model plant, Arabidopsis thaliana and some of the information translatable to crop plants. The present chapter shows the interconnection between cell wall integrity and the action of signaling molecules in the expression of defense-related genes. Moreover, the epigenetic mechanism through DNA and histone modification is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AHJ, Riley RT (1994) Fumonisin and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106:1085–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • AbuQamar S, Chen X, Dahwan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T (2006) Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J 48:28–44

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Alexandersson E, Becker JV, Jacobson D, Nguema-Ona E, Steyn C, Denby KJ, Vivier MA (2011) Constitutive expression of a grapevine polygalacturonase inhibiting protein affects gene expression and cell wall properties in uninfected tobacco. BMC Res Notes 4:493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci U S A 100:2992–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Venegas R (2013) Chromatin modifications and plant immunity in Phaseolus vulgaris L. J Plant Biochem Physiol 1:3

    Google Scholar 

  • Alves MS, Dadalto SP, Gonçalves AB, De Souza GB, Barros VA, Fietto LG (2013) Plant bZIP transcription factors responsive to pathogens: a review. Int J Mol Sci 14:7815–7828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Anderson JP, Lichtenzveig J, Gleason C, Oliver RP, Singh KB (2010) The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiol 154:861–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Atallah M (2005) Jasmonate-responsive AP2-domain transcription factors in Arabidopsis. Ph.D. thesis, Leiden University, Leiden, The Netherlands

    Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    Article  CAS  PubMed  Google Scholar 

  • Berr A, McCallum EJ, Alioua A, Heintz D, Heitz T et al (2010) Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiol 154:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broekaert WF, Pneumas WJ (1988) Pectic polysaccharides elicit chitinase accumulation in tobacco. Physiol Plant 74:740–744

    Article  CAS  Google Scholar 

  • Brosch G, Ransom R, Lechner T, Walton JD, Loidl P (1995) Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell 7:1941–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne LM, Conn KL, Ayert WA, Tewari JP (1991) The camalexins: new phytoalexins produced in the leaves of Camelina sativa (cruciferae). Tetrahedron 47:3909–3914

    Article  CAS  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Büttner M, Singh K (1997) Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci U S A 94:5961–5966

    Article  PubMed  PubMed Central  Google Scholar 

  • Cervone F, Hahn MG, Delorenzo G, Darvill A, Albersheim P (1989) Host-pathogen interactions. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol 90:542–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa-Aragunde N, Lombardo C, Lamattina L (2008) Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. New Phytol 179:386–396

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Guo FQ (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145

    Article  CAS  Google Scholar 

  • Davis KR, Darvill AG, Albersheim P, Dell A (1986) Host–pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol 80:568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol 39:313–335

    Article  PubMed  Google Scholar 

  • Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGS and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 3:423–445

    Article  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K (2011) Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405–2421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (2004) Botrytis: biology, pathology and control. Kluwer, Dordrecht, p 416

    Google Scholar 

  • Ellis C, Karafyllidis I, Turner JG (2002a) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant Microbe Interact 15:1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002b) The Arabidopsis mutant Cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahimeh A, Siti Nor Akmar A, Alireza K, Faridah A, Umi KY, Pei Pei C (2011) Differential expression of oil palm pathology genes during interactions with Ganoderma boninense and Trichoderma harzianum. J Plant Physiol 168:1106–1113

    Article  CAS  Google Scholar 

  • Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci U S A 107:13544–13549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V, Bellincampi D, Cervone F, De Lorenzo G (2008) Transgenic expression of a fungal endopolygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol 146:669–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 4:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freschi L (2013) Nitric oxide and phytohormone interactions: current status and perspectives. Front Plant Sci 4:398

    Article  PubMed  PubMed Central  Google Scholar 

  • Friesen TL, Chu CG, Liu ZH, Xu SS, Halley S, Faris JD (2009) Host-selective toxins produced by Stagonospora nodorum confer disease susceptibility in adult wheat plants under field conditions. Theor Appl Genet 118:1489–1497

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Marcos A, Pacheco R, Manzano A, Aguilar E, Tenllado F (2013) Oxylipin biosynthesis genes positively regulate programmed cell death during compatible infections with the synergistic pair Potato virus X-Potato virus Y and tomato spotted wilt virus. J Virol 87:5769–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146:381–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gnonlonfin GJB, Sanni A, Brimer L (2012) Review scopoletin—a coumarin phytoalexin with medicinal properties. Crit Rev Plant Sci 31:47–56

    Article  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Blanco C, Feng DX, Hu J, Sanchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sánchez-Rodríguez C, Anderson LK, Somerville S, Marco Y, Molina A (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann-Sommergruber K (2002) Pathogenesis-related (PR)-proteins identified as allergens. Biochem Soc Trans 30:930–935

    Article  CAS  PubMed  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon J, Kwon S, Lee YW (2014) Histone acetylation in fungal pathogens of plants. Plant Pathol J 30:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987

    Article  CAS  PubMed  Google Scholar 

  • Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Sakata K, Shimizu B (2008) Scopoletin is biosynthesized via orthohydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J 55:989–999

    Article  CAS  PubMed  Google Scholar 

  • Kariola T, Brader G, Li J, Palva ET (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17:282–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36

    Article  CAS  PubMed  Google Scholar 

  • Kuzniak E, Sklodowska M (2005) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222:192–200

    Article  CAS  PubMed  Google Scholar 

  • Kwon HJ, Owa T, Hassig CA, Shimada J, Schreiber SL (1998) Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc Natl Acad Sci U S A 95:3356–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, Schoonbeek HJ, Hess S, Mir R, Léon J, Lamotte O, Métraux JP (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 7, e1002148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai Z, Wang F, Zheng Z, Fan B, Chen Z (2011a) A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J Cell Mol Biol 66:953–968

    Article  CAS  Google Scholar 

  • Lai Z, Li Y, Wang F, Cheng Y, Fan B, Yu JQ, Chen Z (2011b) Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell 23:3824–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linthorst HJ, van Loon LC, van Rossum CM, Mayer A, Bol JF, van Roekel JS, Meulenhoff EJ, Cornelissen BJ (1990) Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant Microbe Interact 3:252–258

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Yang L, Zhou X, Zhou M, Lu Y, Ma L, Ma H, Zhang Z (2013) Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot 64:2243–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon GD, Goodman BA, Williamson B (2004) Botrytis cinerea perturbs redox processes as an attack strategy in plants. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, pp 119–141

    Google Scholar 

  • Mamgain A, Roychowdhury R, Tah J (2013) Alternaria pathogenicity and its strategic controls. Res J Biol 1:1–9

    Google Scholar 

  • Mang HG, Laluk KA, Parsons EP, Kosma DK, Cooper BR, Park HC, AbuQamar S, Boccongelli C, Miyazaki S, Consiglio F, Chilosi G, Bohnert HJ, Bressan RA, Mengiste T, Jenks MA (2009) The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. Plant Physiol 151:290–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M, Matsutani S, Sugita K, Yoshida H, Hayashi F, Terui Y, Nakai H, Uotani N, Kawamura Y, Matsumoto K, Shoji J, Yoshida T (1992) Depudecin: a novel compound inducing the flat phenotype of NIH3T3 cells doubly transformed by ras- and src-oncogene, produced by Alternaria brassicicola. J Antibiot 45:879–885

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt LW, Costa GGL, Thomazella DPT, Teixeira PJPL, Carazzolle MF, Schuster SC, Carlson JE, Guiltinan MJ, Mieczkowski P, Farmer A, Ramaraj T, Crozier J, Davis RE, Shao J, Melnick RL, Pereira GAG, Bailey BA (2014) Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases. BMC Genomics 15:164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melotto M, Underwood HW, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LA, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJ, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nafisi M, Stranne M, Zhang L, van Kan JAL, Sakuragi Y (2014) The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. Mol Plant Microbe Interact 27:781–792

    Article  CAS  PubMed  Google Scholar 

  • Nafisi M, Fimognari L, Sakuragi Y (2015) Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. Phytochemistry 112:63–71

    Article  CAS  PubMed  Google Scholar 

  • Nagy ED, Lee TC, Ramakrishna W, Xu Z, Klein PE, SanMiguel P, Cheng CP, Li J, Devos KM, Schertz K, Dunkle L, Bennetzen JL (2007) Fine mapping of the Pc locus of Sorghum bicolor, a gene controlling the reaction to a fungal pathogen and its host-selective toxin. Theor Appl Genet 114:961–970

    Article  CAS  PubMed  Google Scholar 

  • Nurmberg PL, Knox KA, Yun BW, Morris PC, Shafiei R, Hudson A, Loake GJ (2007) The developmental selector AS1 is an evolutionarily conserved regulator of the plant immune response. Proc Natl Acad Sci U S A 104:18795–18800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusaibah SA, Siti Nor Akmar A, Mohamad Pauzi Z, Idris AS, Sariah M (2011) Detection of phytosterols in Ganoderma boninense-infected oil palm seedlings through GC-MS analysis. J Oil Palm Res 23:1069–1077

    CAS  Google Scholar 

  • Okubara PA, Paulitz TC (2005) Root defense responses to fungal pathogens: a molecular perspective. Plant Soil 274:215–226

    Article  CAS  Google Scholar 

  • Oliver RP, Ipcho SV (2004) Arabidopsis pathology breathes new life into the necrotrophs-vs-biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347–352

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci U S A 96:6553–6655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otha M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    Article  Google Scholar 

  • Ottmann C, Luberacki B, Kufner I, Koch W, Brunner F, Weyand M, Mattinen L, Pirhonen M, Anderluh G, Seitz HU, Nurnberger T, Oecking C (2009) A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci U S A 106:10359–10364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedras MSC, Sarwar MG, Suchy M, Adio AM (2006) The phytoalexins from cauliflower, caulilexins A, B and C: isolation, structure determination, syntheses and antifungal activity. Phytochemistry 67:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins TW, Tudzynski P, Tiedemann AV, Tudzynski B, Ten Have A, Hansem ME, Tenberge K, van Kan JAL (2000) Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: Kronstad JW (ed) Fungal pathology. Kluwer, Dordrecht, pp 33–64

    Chapter  Google Scholar 

  • Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J, Brodersen P, Grasser KD, Mattsson O, Glazebrook J, Mundy J, Petersen M (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert D, Gijzen M, Nürnberger T (2006) Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez V, Agorio A, Coego A, Garcia-Andrade J, Hernandez MJ, Balaguer B, Ouwerkerk PB, Zarra I, Vera P (2011) MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. Plant Physiol 155:1920–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vallet A, Ramos B, Bednarek P, Lopez G, Pislewska-Bednarek M, Schulze-Lefert P, Molina A (2010) Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J 63:115–127

    CAS  PubMed  Google Scholar 

  • Sicilia F, Fernandez-Recio J, Caprari C, De Lorenzo G, Tsernoglou D, Cervone F, Federici L (2005) The polygalacturonase-inhibiting protein PGIP2 of Phaseolus vulgaris has evolved a mixed mode of inhibition of endopolygalacturonase PG1 of Botrytis cinerea. Plant Physiol 139:1380–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JE, Mengesha B, Tang H, Mengiste T, Bluhm BH (2014) Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming. BMC Genomics 15:334

    Article  PubMed  PubMed Central  Google Scholar 

  • Staats M, van Baarlen P, Schouten A, van Kan JA, Bakker FT (2007) Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fungal Genet Biol 44:52–63

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci U S A 98:12837–12842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Wang L, Zhang B, Ma J, Hettenhausen C, Cao G, Sun G, Wu J, Wu J (2014) Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signaling. J Exp Bot 65:4305–4315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    Article  CAS  PubMed  Google Scholar 

  • Thomma BPHJ (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4:225–236

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F (2009) Network properties of robust immunity in plants. PLoS Genet 5, e1000772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Kan JA (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC (1985) Pathogenesis-related proteins. Plant Mol Biol 4:111–116

    Article  PubMed  Google Scholar 

  • van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • van Wees S, Chang HS, Zhu T, Glazebrook J (2003) Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol 132:606–617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veronese P, Chen X, Bluhm B, Salmeron J, Dietrich R, Mengiste T (2004) The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Plant J 40:558–574

    Article  CAS  PubMed  Google Scholar 

  • Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci U S A 95:7209–7214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vleeshouwers VGAA, Oliver RP (2014) Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant Microbe Interact 27:196–206

    Article  CAS  PubMed  Google Scholar 

  • Walton JD (2006) HC-toxin. Phytochemistry 67:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson K, Grant WP, Green LE, Hunter S, Jeger MJ, Lowe P, Medley GF, Mills P, Phillipson J, Poppy GM, Waage J (2011) Infectious diseases of animals and plants: an interdisciplinary approach. Phil Trans R Soc B 366:1933–1942

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name. Annu Rev Phytopathol 40:251–285

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Jiang Y, Muhammad HR, Deyholos MK, Kav NNV (2009) Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L) in response to fungal pathogens and hormone treatments. BMC Plant Biol 9:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang ZY, Wang HH, Wang XM, Bi YR (2011) Nitric oxide enhances aluminum tolerance by affecting cell wall polysaccharides in rice roots. Plant Cell Rep 30:1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Choquer M, Zhang B, Ge H, Hu S, Ma H, Chen S (2011) LongSAGE gene-expression profiling of Botrytis cinerea germination suppressed by resveratrol, the major grapevine phytoalexin. Fungal Biol 115:815–832

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Nor Akmar Abdullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdullah, S.N.A., Akhtar, M.S. (2016). Plant and Necrotrophic Fungal Pathogen Interaction: Mechanism and Mode of Action. In: Hakeem, K., Akhtar, M., Abdullah, S. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-27455-3_3

Download citation

Publish with us

Policies and ethics