Skip to main content

Soil Bacteria for Polycyclic Aromatic Hydrocarbon (PAH) Remediation: Application Potentialities and Limitations

  • Chapter
  • First Online:
Plant, Soil and Microbes

Abstract

The PAH pollution in the crude oil-contaminated sites is a perennial problem in several parts of the world. About 130 PAH species have been identified, and out of them 16 are reported to be as priority pollutants by the United States Environmental Protection Agency (USEPA) which include toxic, carcinogenic, and mutagenic compounds. PAHs are also ubiquitous in the environment due to atmospheric deposition resulting from the incomplete combustion of organic matter such as diesel, coal, and wood. These compounds are persistent pollutant in the soil system, and their persistency increases with the increase in molecular weight. Several remediation techniques including both chemical and biological method have been tested for decontamination of the PAH-polluted soil ecosystem. Each method has advantages as well as limitations. Bacteria are the dominant microorganism in the PAH-contaminated soil and play a crucial role in degradation of a wide range of PAH species. Both aerobic and anaerobic biodegradation are important and their mechanism has been studied. However, aerobic bacteria and their degradation metabolism on PAHs have been well studied as against their anaerobic counterpart. Besides, PAH bioremediation is governed by several factors such as type of organism, bioavailability of the compounds, soil type, microbial enzyme, etc., that are associated with the successful remediation of the PAH pollutant from the environment. In this chapter, an attempt has been made to discuss the application potentialities as well as limitations of soil bacterial candidates in terms of degradation of PAH compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahammed GJ, Gao CJ, Ogweno JO, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2012a) Brassinosteroids induce plant tolerance against phenanthrene by enhancing degradation and detoxification in Solanum lycopersicum L. Ecotoxicol Environ Safe 80:28–36

    Article  CAS  Google Scholar 

  • Ahammed GJ, Yuan HL, Ogweno JO, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2012b) Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere 86(5):546–555

    Article  CAS  PubMed  Google Scholar 

  • Aitken MD, Stringfellow WT, Nagel RD, Kazunga C, Chen SH (1998) Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol 44:743–752

    Article  CAS  PubMed  Google Scholar 

  • Alexander RR, Alexander M (2000) Bioavailability of genotoxic compounds in soils. Environ Sci Technol 34:1589–1593

    Article  CAS  Google Scholar 

  • Ambrosoli R, Petruzzelli L, Luis MJ, Marsan FA (2005) Anaerobic PAH degradation in soil by a mixed bacterial consotium under denitrifying conditions. Chemosphere 60:1231–1236

    Google Scholar 

  • Antizar-Ladislao B, Lopez-Real JM, Beck AJ (2006) Investigation of organic matter dynamics during in-vessel composting of aged coal-tar contaminated soil by fluorescence excitation–emission spectroscopy. Chemosphere 64:839–847

    Article  CAS  PubMed  Google Scholar 

  • Anyika C, Majid ZA, Ibrahim Z, Zakaria MP, Yahya A (2015) The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a review. Environ Sci Pollut Res Int 22:3314. doi:10.1007/s11356-014-3719-5

    Article  CAS  PubMed  Google Scholar 

  • Arkoosh M, Casillas E (1998) Effect of pollution on fish diseases: potential impacts on salmonid populations. J Aquat Anim Health 10:182–190

    Article  Google Scholar 

  • Arulazhagan P, Vasudevan N (2011) Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62:388–394

    Article  CAS  PubMed  Google Scholar 

  • Baboshin MA, Golovleva LA (2012) Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects. Microbiology 81:639–650

    Google Scholar 

  • Bacosa HP, Inoue C (2015) Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J Hazard Mater 283:689–697

    Article  CAS  PubMed  Google Scholar 

  • Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S (2012) Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol 112:83–90

    Article  CAS  PubMed  Google Scholar 

  • Balk L, Hylland K, Hansson T, Berntssen MHG, Beyer J, Jonsson G (2011) Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production. PLoS One 6(5):e19735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biot 80:723–726

    Google Scholar 

  • Bavarva SR (2015) Bioremediation a secure and reverberation module for ground-water and soil. Int J Innov Emerg Res Eng 2:32–38

    Google Scholar 

  • Benjamin AMB, Moritz B, Linda B, Elvis N, Firibu KS, Wolfgang W (2014) Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): bioaccumulation and health risk assessment. Environ Int 65:135–146

    Article  CAS  Google Scholar 

  • Bergmann FD, Selesi D, Meckenstock RU (2011) Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47. Arch Microbiol 193:241–250

    Article  CAS  PubMed  Google Scholar 

  • Bewley RJF, Webb G (2001) In situ bioremediation of groundwater contaminated with phenols, BTEX and PAHs using nitrate as electron acceptor. Land Contam Reclam 9:335–347

    Google Scholar 

  • Biachea C, Lorgeouxc C, Andriatsihoaranaa S, Colombanoe S, Faure P (2015) Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils. J Hazard Mater 286:55–63

    Article  CAS  Google Scholar 

  • Booc F, Thornton C, Lister A, MacLatchy D, Willett KL (2014) Benzo[a]pyrene effects on reproductive endpoints in Fundulus heteroclitus. Toxicol Sci 140:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66(3):1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brette F, Machado B, Cros C, Incardona JP, Scholz NL, Block BA (2014) Crude oil impairs cardiac excitation-contraction coupling in fish. Science 343:772–776

    Google Scholar 

  • Busby WF, Stevens EK, Martin CN, Chow FL, Garner CR (1989) Comparative lung tumorigenicity of parent and mononitro-polynuclear aromatic hydrocarbons in the BLU:Ha newborn mouse assay. Toxicol Appl Pharm 99:555–563

    Google Scholar 

  • Cases I, de Lorenzo V (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3(2):105–118

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Xue-gong L, Ren B, Liu B, Zhang K, Zhang H, Wan Y (2015) Effects of LB broth, naphthalene concentration, and acetone on the naphthalene degradation activities by Pseudomonas putida G7. Water Environ Res 87(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Chen YQ, Adam A, Toure O, Dutta SK (2005) Molecular evidence of genetic modification of Sinorhizobium meliloti: enhanced PCB bioremediation. J Ind Microbiol Biotechnol 32:561–566

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Yuan M, Qian L (2012) Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochars as carriers. J Soils Sedim 12(9):1350–1359

    Article  CAS  Google Scholar 

  • D’Souza R, Varun M, Lakhani A, Singla V, Paul MS (2014) PAH Contamination of Urban Soils and Phytoremediation. In Management of Environmental Contaminants, Volume 1; Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds.). Phytoremediation 1: 219-241Dean-Ross D, Moody J, Cerniglia CE (2002) Utilisation of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol 41:1–7

    Google Scholar 

  • Desalme D, Binet P, Bernard N, Gilbert D, Tousaint M, Chiapusio G (2011) Atmospheric phenanthrene transfer and effects on two grassland species and their root symbionts-a microcosm study. Environ Exp Bot 71(2):146–151

    Article  CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  PubMed  Google Scholar 

  • Erdogmuş SF, Mutlu B, Korcan SE, Guven K, Konuk M (2013) Aromatic hydrocarbon degradation by halophilic archaea isolated from Çamaltı Saltern, Turkey. Water Air Soil Pollut 224(1449):1–9

    Google Scholar 

  • Ezezika OC, Singer PA (2010) Genetically engineered oil-eating microbes for bioremediation: prospects and regulatory challenges. Technol Soc 32:331–335

    Article  Google Scholar 

  • Ferradji FZ, Mnif S, Badis A, Rebbani S, Fodil D, Eddouauoda K, Sayadi S (2014) Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (North of Algeria). Int Biodeter Biodegr 86(c):300–308

    Article  CAS  Google Scholar 

  • Fritsche W, Hofrichter M (2000) Aerobic degradation by microorganisms. In: Klein J (ed) Environmental processes - soil decontamination. Wiley-VCH, Weinheim, pp 146–155

    Google Scholar 

  • Frouin H, Pellerin J, Fournier M, Pelletier E, Richard P, Pichaud N, Rouleau C, Garnerot F (2007) Physiological effects of polycyclic aromatic hydrocarbons on soft-shell clam Mya arenaria. Aquat Toxicol 82(2):120–134

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Delgado C, Alfaro-Barta I, Eymar E (2015) Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. J Hazard Mater 285:259–266

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT, Venkatanarayana D, Jerina M, Yagi H, Yeh H (1975) Oxidation of carcinogens benzo(a)pyrene and benzo(a)anthracene to dihydrodiols by a bacterium. Science 189:295–297

    Article  CAS  PubMed  Google Scholar 

  • Hamdia H, Benzartib S, Aoyamac I, Jedidia N (2012) Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). Int Biodeter Biodegr 67:40–47

    Article  CAS  Google Scholar 

  • Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565-601Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:01–15

    Google Scholar 

  • Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hesham AE, Mawad AMM, Mostafa YM, Shoreit A (2014) Study of enhancement and inhibition phenomena and genes relating to degradation of petroleum polycyclic aromatic hydrocarbons in isolated bacteria. Microbiology 83: 599-607Hong S, Lee S, Choi K, Kim GB, Ha SY, Kwon BO, Ryu J, Yim UH, Shim WJ, Jung J, Giesy JP, Khim JS (2015a) Effect-directed analysis and mixture effects of AhR-active PAHs in crude oil and coastal sediments contaminated by the Hebei Spirit oil spill. Environ Pollut 199:110–118

    Google Scholar 

  • Hong Y, Liao D, Chen J, Khan S, Su J, Li H (2015b) A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environ Sci Pollut Res Int 22:7071. doi:10.1007/s11356-014-3912-6

    Article  CAS  PubMed  Google Scholar 

  • Horng CY, Lin HC, Lee W (2010) A reproductive toxicology study of phenanthrene in medaka (Oryzias latipes). Arch Environ Con Toxicol 58:131–139

    Article  CAS  Google Scholar 

  • Incardona JP, Collier TK, Scholz NL (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196:191–205

    Article  CAS  PubMed  Google Scholar 

  • Isaac P, Martinez FL, Bourguignon N, Sanchez LA, Ferrero MA (2015) Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. Int Biodeter Biodegr 101:23–31

    Article  CAS  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89(1):101–112

    CAS  Google Scholar 

  • Jones MD, Rodgers-Vieira EA, Hu J, Aitken MD (2014) Association of growth substrates and bacterial genera with benzo[a]pyrene mineralization in contaminated soil. Environ Eng Sci 31(12):689–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodegr 45:57–88

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Lemaire J, Bues M, Kabeche T, Hanna K, Simonnot MO (2013) Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation. J Environ Chem Eng 1:1261–1268

    Article  CAS  Google Scholar 

  • Li X, Li P, Lin X, Zhang C, Li Q, Gong Z (2007) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater 150(1):21–26

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharm 238:209-214

    Google Scholar 

  • Liua R, Xiaoa N, Weia S, Zhaob L, Ana J (2014) Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Sci Total Environ 473–474:350–358

    Article  CAS  Google Scholar 

  • Loick N, Hobbs PJ, Hale Mike DC, Jones DL (2009) Bioremediation of Poly-aromatic hydrocarbon (PAH)-contaminated soil by composting. Crit Rev Env Sci Technol 39:271–332

    Article  CAS  Google Scholar 

  • López-Vizcaíno R, Sáez C, Cañizares P, Rodrigo MA (2012) The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment. Sep Purif Technol 88:46–51

    Article  CAS  Google Scholar 

  • Lu XY, Li B, Zhang T, Fang HHP (2012) Enhanced anoxic bioremediation of PAHs-contaminated sediment. Bioresour Technol 104:51–58

    Article  CAS  PubMed  Google Scholar 

  • Maeda AH, Nishi S, Hatada Y, Ozeki Y, Kanaly RA (2014) Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry. J Microbial Biotechnol 7(2):114–129

    Article  CAS  Google Scholar 

  • Mahaffey WR, Gibson DT, Cerniglia CE (1988) Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene. Appl Environ Microbiol 54:2415–2423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B (2010) Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs)-effect on plants. Environ Technol 21:1099–1110

    Article  Google Scholar 

  • Manzetti S (2012) Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines, and nitroarenes through molecular properties. Environ Chem Lett 10:349–361

    Article  CAS  Google Scholar 

  • Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeter Biodegr 70:141–147

    Article  CAS  Google Scholar 

  • Martina BC, Georgeb SJ, Pricea CA, Ryana MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  PubMed  Google Scholar 

  • Mihelcic JR, Lueking DR, Mitzell RJ, Stapleton JM (1993) Bioavailability of sorbed- and separate-phase chemicals. Biodegradation 4:141–153Mitchelmore CL, Chipman JK (1998a) Detection of DNA strand breaks in brown trout (Salmo trutta) hepatocytes and blood cells using the single cell gel electrophoresis (comet) assay. Aquat Toxicol 41: 161–182

    Google Scholar 

  • Mitchelmore CL, Chipman JK (1998b) DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mut Res-Fund Mol Mech Mutagen 399: 135-147 Moody JD, Freeman JP, Cerniglia CE (2005) Degradation of benzo(a)anthracene by mycobacterium vanbaalenii strain PYR-1. Biodegradation 16:513–526

    Google Scholar 

  • Moscoso F, Teijiz I, Deive FJ, Sanroman MA (2012) Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresour Technol 119:270–276

    Article  CAS  PubMed  Google Scholar 

  • Mueller JG, Chapman PJ, Pritchard PH (1989) Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl Environ Microbiol 55:3085–3090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mujahid TY, Wahab A, Padhiar SH, Subhan SA, Baloch MN, Pirzada ZA (2015) Isolation and characterization of hydrocarbon degrading bacteria from petrol contaminated soil. J Basic Appl Sci 11:223–231

    Article  Google Scholar 

  • Nama K, Rodriguezb W, Kukor JJ (2001) Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45(1):11–20

    Article  Google Scholar 

  • Onduka T, Ojima D, Kakuno A, Mochida K, Ito K, Koyama J, Fujii K (2012) Nitrated polycyclic aromatic hydrocarbons in the marine environment: acute toxicities for organisms at three trophic levels. Jpn J Environ Toxicol 15:1–10

    Google Scholar 

  • Onduka T, Ojima D, Ito K, Mochida K, Koyama J, Fujii K (2015) Reproductive toxicity of 1-nitronaphthalene and 1-nitropyrene exposure in the mummichog, Fundulus heteroclitus. Ecotoxicology 24:648–656

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Calvo JJ, Tejeda-Agredano MC, Jimenez-Sanchez C, Congiu E, Sungthong R, Niqui-Arroyo JL, Cantos M (2013) Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation. J Hazard Mater 261:733–745

    Google Scholar 

  • Ortega-González DK, Martínez-González G, Flores CM, Zaragoza D, Cancino-Diaz JC, Cruz-Maya JA, Jan-Roblero J (2015) Amycolatopsis sp. Poz14 isolated from oil-contaminated soil degrades polycyclic aromatic hydrocarbons. Int Biodeter Biodegr 99:165–173

    Article  CAS  Google Scholar 

  • Pandey AK, Chaudhary P, Singh SB, Arora A, Kumar K, Chaudhry S, Nain L (2012) Deciphering the traits associated with PAH degradation by a novel Serratia marcesencs L-11 strain. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:755–765

    Article  CAS  PubMed  Google Scholar 

  • Patel JG, Kumar NJI, Kumar RN, Khan SR (2015) Isolation and characterization of three and four ring PAHs degrading bacteria from contaminated sites, Ankleshwar, Gujarat, India. Int J Environ 4(1):130–140

    Article  Google Scholar 

  • Peng RH, Fu XY, Zhao W, Tian YS, Zhu B, Han HJ, Xu J, Yao QH (2015) Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas. Environ Sci Technol 48:12824–12832

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Ping L, Zhang C, Zhang C, Zhu Y, He H, Wu M, Tang T, Li Z, Zhao H (2014) Isolation and characterization of pyrene and benzo[a] pyrene-degrading Klebsiella pneumonia PL1 and its potential use in bioremediation. Appl Microbiol Biotechnol 98:3819–3828

    Article  CAS  PubMed  Google Scholar 

  • Qiao M, Wang C, Huang S, Wang D, Wang Z (2006) Composition, sources and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int 32(1):28–33

    Article  CAS  PubMed  Google Scholar 

  • Reddy MS, Naresh B, Leela T, Prashanthi M, Madhusudhan N, Dhanasri G, Devi P (2010) Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour Technol 101:7980–7983

    Article  CAS  PubMed  Google Scholar 

  • Rehmann K, Noll HP, Steiberg CEW, Kettrup AA (1998) Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36(14):2977–2992

    Article  CAS  PubMed  Google Scholar 

  • Reichenberg F, Karlson UG, Gustafsson O, Long SM, Pritchard PH, Mayer P (2010) Low accessibility and chemical activity of PAHs restrict bioremediation and risk of exposure in a manufactured gas plant soil. Environ Pollut 158(5):1214–1220

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Pan L, Wang L (2015) Toxic effects upon exposure to benzo[a]pyrene in juvenile white shrimp Litopenaeus vannamei. Environ Toxicol Pharmacol 39:194–207

    Article  CAS  PubMed  Google Scholar 

  • Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34(5):846–853

    Article  CAS  Google Scholar 

  • Romero MC, Cazau MC, Giorgieri S, Arambarri AM (1998) Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ Pollut 101:355–359

    Article  CAS  Google Scholar 

  • Rondon MA, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fert Soils 43:699-708

    Google Scholar 

  • Rothermich MM, Hayes LA, Lovley DR (2002) Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ Sci Technol 36(22):4811–4817

    Article  CAS  PubMed  Google Scholar 

  • Ruberto LAM, Vazquez SC, Curtosi A, Mestre MC, Pelletier E, Cormack WPM (2006) Phenanthrene biodegradation in soils using an Antarctic bacterial consortium. Bioremediat J 10(4):191–201

    Article  CAS  Google Scholar 

  • Sahinkaya E, Dilek FB (2005) Biodegradation of 4-chlorophenol by acclimated and un-acclimated activated sludge - evaluation of bio kinetic coefficients. Environ Res 99:243–252

    Article  CAS  PubMed  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248

    Article  CAS  PubMed  Google Scholar 

  • Sarma Roy AR, Baruah R, Borah M, Singh AK, Deka Boruah HP, Saikia N, Deka M, Dutta N, Bora TC (2014) Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int Biodeter Biodegr 94:79–89

    Article  CAS  Google Scholar 

  • Sayara T, Borràs E, Caminal G, Sarrà M, Sánchez A (2011) Bioremediation of PAHs-contaminated soil through composting: influence of bioaugmentation and biostimulation on contaminant biodegradation. Int Biodeter Biodegr 65(6):859–865

    Article  CAS  Google Scholar 

  • Saylor GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11(3):286–289

    Article  Google Scholar 

  • Scarlett AG, Clough R, West C, Lewis CA, Booth AM, Rowland SJ (2011) Alkylnaphthalenes: priority pollutants or minor contributors to the poor health of marine mussels. Environ Sci Technol 45:6160–6166

    Article  CAS  PubMed  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54(4):809–818

    Article  CAS  Google Scholar 

  • Sforzini S, Moore MN, Boeri M, Bencivenga M, Viarengo A (2015) Effects of PAHs and dioxins on the earthworm Eisenia andrei: a multivariate approach for biomarker interpretation. Environ Pollut 196:60–71

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Murayama N, Yamazaki H, Tanaka K, Takenaka S, Komori M, Kim D, Guengerich FP (2013) Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochromes P450, 2A13 and 2A6. Chem Res Toxicol 26:529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480(1-2):1–9

    Article  CAS  PubMed  Google Scholar 

  • Song X, Xu Y, Li G, Zhang Y, Huang T, Hu Z (2011) Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Marine Pollut Bull 62:2122–2128

    Article  CAS  Google Scholar 

  • Sopena F, Laiz L, Morillo E, Sanchez-Trujillo MA, Villaverde J, Jurado V, Saiz-Jimenez C (2014) Phenanthrene biodegradation by Pseudomonas xanthomarina isolated from an aged contaminated soil. Clean (Weinh) 42(6):785–790

    CAS  Google Scholar 

  • Spasojević JM, Maletić SP, Rončević SD, Radnović DV, Cučak DI, Tričković JS, Dalmacija BD (2015) Using chemical desorption of PAHs from sediment to model biodegradation during bioavailability assessment. J Hazard Mater 283:60–69

    Google Scholar 

  • Sun R, Jin J, Sun G, Liu Y, Liu Z (2010) Screening and degrading characteristics and community structure of a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterial consortium from contaminated soil. J Environ Sci 22:1576–1585

    Article  CAS  Google Scholar 

  • Sun M, Fu D, Teng Y, Shen Y, Luo Y, Li Z, Christie P (2011) In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity. J Soils Sedim 11(6):980–989

    Article  CAS  Google Scholar 

  • Sun M, Luo Y, Christie P, Jia Z, Li Z, Teng Y (2012) Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil. J Environ Sci 24(5):926–933

    Article  CAS  Google Scholar 

  • Szulc A, Ambrozewicz D, Sydow M, Lawniczak L, Piotrowska-Cyplik A, Marecik R, Chrzanowski L (2014) The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. J Environ Manag 132:121–128

    Article  CAS  Google Scholar 

  • Teng Y, Wang X, Li L, Zhengao L, Luo Y (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6(32):1–11

    Google Scholar 

  • Tsai JC, Kumar M, Lin JG (2009) Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. J Hazard Mater 164: 847–855

    Google Scholar 

  • Vila J, Tauler M, Grifoll M (2015) Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 33:95–102

    Article  CAS  PubMed  Google Scholar 

  • Volkering F, Breure AM, Van Andel JG, Rulkens WH (1995) Influence of non ionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61:1699–1705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Huang H, Zhu Z, Li T, He Z, Yang X, Alva A (2013) Phytoextraction of Metals and Rhizoremediation of PAHs in Co-Contaminated Soil by Co-Planting of Sedum alfredii with Ryegrass (Lolium Perenne) or Castor (Ricinus Communis). Int J Phytoremediation 15(3):283–298

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Bandowe BA, Han Y, Cao J, Zhan C, Wilcke W (2015) Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 134:512–520

    Article  CAS  PubMed  Google Scholar 

  • Winquist E, Björklöf K, Schultz E, Räsänen M, Salonen K, Anasonye F, Cajthaml T, Steffen KT, Jørgensen KS, Tuomela M (2014) Bioremediation of PAH-contaminated soil with fungi – From laboratory to field scale. Int Biodeter Biodegr 86:238–247

    Article  CAS  Google Scholar 

  • Wislocki PG, Bagan ES, Lu AYH, Dooley KL, Fu PP, Hanhsu H, Beland FA, Kadlubar FF (1986) Tumorigenicity of nitrated derivatives of pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene in newborn mouse assay. Carcinogenesis 7:1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Teng Y, Li Z, Liao X, Lua Y (2008) Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem 40:789–796

    Article  CAS  Google Scholar 

  • Yessica GP, Alejandro A, Ronald FC, Jose AJ, Esperanza MR, Samuel Cruz-Sánchez J, Remedios Mendoza-López M, Ormeño-Orrillo E (2013) Tolerance, growth and degradation of phenanthrene and benzo[a]pyrene by Rhizobium tropici CIAT 899 in liquid culture medium. Appl Soil Ecol 63:105–111

    Article  Google Scholar 

  • Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessments of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159:2575–2585

    Article  CAS  PubMed  Google Scholar 

  • Yuan SY, Chang BV (2007) Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan. J Environ Sci Health B 42(1):63–69

    Article  CAS  PubMed  Google Scholar 

  • Yuan SY, Shiung LC, Chang BV (2002) Biodegradation of polycyclic aromatic hydrocarbons by inoculated microorganisms in soil. Bull Environ Conatm Toxicol 69:66–73

    Article  CAS  Google Scholar 

  • Zhang X, Sullivan ER, Young LY (2000) Evidence for aromatic ring reduction in the biodegradation pathwayof carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11: 117–124

    Google Scholar 

  • Zhang Z, Hou Z, Yang C, Ma C, Tao F, Xu P (2011) Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour Technol 102:4111–4116

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Liao X, Yan X, Huling SG, Chai T, Tao H (2013) Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 254–255:228–235

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Authors are grateful to the Science and Engineering research Board (SERB), DST, Govt. of India for financial support. The corresponding author is running a project in this line under SERB (DST) fast track young scientist program. Authors are also grateful to Institute Advanced Study in Science and Technology (IASST) authority for their kind permission to carry out the academic activities and research work in this track.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Deka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deka, H., Lahkar, J. (2016). Soil Bacteria for Polycyclic Aromatic Hydrocarbon (PAH) Remediation: Application Potentialities and Limitations. In: Hakeem, K., Akhtar, M., Abdullah, S. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-27455-3_15

Download citation

Publish with us

Policies and ethics