Skip to main content

Effects of Environmentally Acquired Heavy Metals and Nutrients on the Epigenome and Phenotype

  • Chapter
  • First Online:
Translational Toxicology

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Cadmium, arsenic, mercury and lead are ubiquitous environmental contaminants that tend to co-occur. Unlike organic compounds that are chemically, biologically, or photo-degraded, these metals persist in the environment for indefinite periods. Although protein disruption/misfolding, generation of oxidative stress, and endocrine disruption are known effects of toxic metal exposure, beyond the known toxic effects of high dose exposure, mechanisms causing these effects, especially at low chronic doses, are still largely unknown. Epigenetics is emerging as a viable mechanistic framework to explain how the environment interacts with the genome to alter disease risk. Alterations in DNA methylation, histone marks and chromatin structure have been proposed as useful exposure assessment biomarkers that can substantially improve assessment of risk in etiologic studies where exposure occurs early during the life course. If developed into exposure-specific biomarkers, these epigenetic marks can be a powerful tool to identify populations exposed to low doses where phenotypic response may not be immediately apparent, and also to evaluate the efficacy of therapeutic and public health interventions. This could be particularly important as exposed populations tend to be the socioeconomically disadvantaged who have limited contact with the health care system. In this review, we provide an overview of the current state of literature on heavy-metal-associated epigenetic alterations. We discuss the extent to which such epigenetic alterations alter susceptibility to common chronic diseases and how they might be mitigated by some nutrients, albeit within narrow margins. We conclude by discussing key issues that must be resolved if human epigenetic data is to provide useful biomarkers and mechanistic insights into how low dose chronic exposure to these metals might alter the epigenome and increase disease susceptibility.

This work was supported by NIH grants R01DK085173, P30ES025128, P01ES022831 and US EPA grant RD-83543701. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the USEPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S et al (2011) Heavy metals and cardiovascular disease: results from the National Health and Nutrition Examination Survey (NHANES) 1999–2006. Angiology 62(5):422–429

    Article  PubMed  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2015) http://www.atsdr.cdc.gov/

  • Ahamed M, Siddiqui MK (2007) Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta 383(1–2):57–64

    Article  CAS  PubMed  Google Scholar 

  • Ahamed M et al (2005) Environmental exposure to lead and its correlation with biochemical indices in children. Sci Total Environ 346(1–3):48–55

    Article  CAS  PubMed  Google Scholar 

  • Akesson A et al (2014) Non-renal effects and the risk assessment of environmental cadmium exposure. Environ Health Perspect 122(5):431–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amin-Zaki L et al (1974) Intra-uterine methylmercury poisoning in Iraq. Pediatrics 54(5):587–595

    CAS  PubMed  Google Scholar 

  • Anis TH et al (2007) Chronic lead exposure may be associated with erectile dysfunction. J Sex Med 4(5):1428–1434; discussion 1434–6

    Article  CAS  PubMed  Google Scholar 

  • Antonio MT, Corpas I, Leret ML (1999) Neurochemical changes in newborn rat’s brain after gestational cadmium and lead exposure. Toxicol Lett 104(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  • Aposhian HV (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37:397–419

    Article  CAS  PubMed  Google Scholar 

  • Arita A et al (2012) The effect of exposure to carcinogenic metals on histone tail modifications and gene expression in human subjects. J Trace Elem Med Biol 26(2–3):174–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asmuss M et al (2000) Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Carcinogenesis 21(11):2097–2104

    Article  CAS  PubMed  Google Scholar 

  • Azab SF et al (2014) Serum trace elements in obese Egyptian children: a case-control study. Ital J Pediatr 40:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailey KA, Fry RC (2014) Arsenic-associated changes to the epigenome: what are the functional consequences? Curr Environ Health Rep 1:22–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballatori N, Clarkson TW (1985) Biliary secretion of glutathione and of glutathione-metal complexes. Fundam Appl Toxicol 5(5):816–831

    Article  CAS  PubMed  Google Scholar 

  • Bandara JM et al (2010) Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution. Toxicol Lett 198(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Basha MR et al (2005) The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci 25(4):823–829

    Article  CAS  PubMed  Google Scholar 

  • Batuman V, Wedeen RP (2014) The persistence of chronic lead nephropathy. Am J Kidney Dis 64(1):1–3

    Article  PubMed  Google Scholar 

  • Bellinger DC (2004) Lead. Pediatrics 113(4 Suppl):1016–1022

    PubMed  Google Scholar 

  • Benbrahim-Tallaa L et al (2007) Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect 115(10):1454–1459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benbrahim-Tallaa L et al (2009) Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype. Environ Health Perspect 117(12):1847–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlin M, Zalups RK, Fowler BA (2007) Mercury. In: Nordberg GF, Fowler BA, Nordberg M, Friberg LT (eds) Handbook on the toxicology of metals. Elsevier, New York

    Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82(8):493–512

    Article  CAS  PubMed  Google Scholar 

  • Bihaqi SW et al (2011) Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: implications for Alzheimer’s disease. J Alzheimers Dis 27(4):819–833

    CAS  PubMed  Google Scholar 

  • Bonomi F et al (1994) Reversible and non-denaturing replacement of iron by cadmium in Clostridium pasteurianum ferredoxin. Eur J Biochem 222(2):639–644

    Article  CAS  PubMed  Google Scholar 

  • Borges VC et al (2007) Heavy metals modulate glutamatergic system in human platelets. Neurochem Res 32(6):953–958

    Article  CAS  PubMed  Google Scholar 

  • Borisova T et al (2011) Presynaptic malfunction: the neurotoxic effects of cadmium and lead on the proton gradient of synaptic vesicles and glutamate transport. Neurochem Int 59(2):272–279

    Article  CAS  PubMed  Google Scholar 

  • Bourque SL et al (2008) Long-term circulatory consequences of perinatal iron deficiency in male Wistar rats. Hypertension 51(1):154–159

    Article  CAS  PubMed  Google Scholar 

  • Brent J (2006) Review of: “medical toxicology”. Clin Toxicol 44:355

    Article  Google Scholar 

  • Brubaker CJ et al (2010) The influence of age of lead exposure on adult gray matter volume. Neurotoxicology 31(3):259–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdge GC, Lillycrop KA (2010) Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 30:315–339

    Article  CAS  PubMed  Google Scholar 

  • Bustaffa E et al (2014) Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch Toxicol 88(5):1043–1067

    Article  CAS  PubMed  Google Scholar 

  • Capel ID et al (1981) Comparison of concentrations of some trace, bulk, and toxic metals in the hair of normal and dyslexic children. Clin Chem 27(6):879–881

    CAS  PubMed  Google Scholar 

  • Casalino E, Sblano C, Landriscina C (1997) Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 346(2):171–179

    Article  CAS  PubMed  Google Scholar 

  • Castoldi AF, Coccini T, Manzo L (2003) Neurotoxic and molecular effects of methylmercury in humans. Rev Environ Health 18(1):19–31

    Article  PubMed  Google Scholar 

  • Chang S et al (2010) Stability and folding behavior analysis of zinc-finger using simple models. Int J Mol Sci 11(10):4014–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H et al (2001) Genetic events associated with arsenic-induced malignant transformation: applications of cDNA microarray technology. Mol Carcinog 30(2):79–87

    Article  PubMed  Google Scholar 

  • Chen L et al (2006) Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population. Diabetes Care 29(12):2682–2687

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2011) Effects of cadmium on bone microstructure and serum tartrate-resistant acid phosphatase 5b in male rats. Exp Biol Med (Maywood) 236(11):1298–1305

    Article  CAS  Google Scholar 

  • Cheng TF, Choudhuri S, Muldoon-Jacobs K (2012) Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 32(9):643–653

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z et al (2013) Trophic relationships and health risk assessments of trace metals in the aquaculture pond ecosystem of Pearl River Delta, China. Chemosphere 90(7):2142–2148

    Article  CAS  PubMed  Google Scholar 

  • Chiavegatto S et al (2012) Hypothalamic expression of Peg3 gene is associated with maternal care differences between SM/J and LG/J mouse strains. Brain Behav 2(4):365–376

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho GJ et al (2012) The relationship between blood mercury level and osteoporosis in postmenopausal women. Menopause 19(5):576–581

    Article  PubMed  Google Scholar 

  • Cho YA et al (2013) Dietary cadmium intake and the risk of cancer: a meta-analysis. PLoS One 8(9):e75087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi BH et al (1978) Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero. J Neuropathol Exp Neurol 37(6):719–733

    Article  CAS  PubMed  Google Scholar 

  • Chow ES et al (2008) Cadmium inhibits neurogenesis in zebrafish embryonic brain development. Aquat Toxicol 87(3):157–169

    Article  CAS  PubMed  Google Scholar 

  • Christensen BC, Marsit CJ (2011) Epigenomics in environmental health. Front Genet 2:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen BC et al (2009) Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Res 69(15):6315–6321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu F et al (2011) Quantitative mass spectrometry reveals the epigenome as a target of arsenic. Chem Biol Interact 192(1–2):113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110(Suppl 1):11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662

    Article  CAS  PubMed  Google Scholar 

  • Cleveland LM et al (2008) Lead hazards for pregnant women and children: part 1: immigrants and the poor shoulder most of the burden of lead exposure in this country. Part 1 of a two-part article details how exposure happens, whom it affects, and the harm it can do. Am J Nurs 108(10):40–49; quiz 50

    Article  Google Scholar 

  • Cornelis R (2005) Handbook of elemental speciation II: species in the environment, food, medicine & occupational health. Wiley, Hoboken. ISBN: 978-0-470-01465-3

    Google Scholar 

  • Cory-Slechta DA (1996) Legacy of lead exposure: consequences for the central nervous system. Otolaryngol Head Neck Surg 114(2):224–226

    Article  CAS  PubMed  Google Scholar 

  • Cui H et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299(5613):1753–1755

    Article  CAS  PubMed  Google Scholar 

  • Desaulniers D et al (2009) Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats. Int J Toxicol 28(4):294–307

    Article  CAS  PubMed  Google Scholar 

  • Desi I, Nagymajtenyi L, Schulz H (1998) Behavioural and neurotoxicological changes caused by cadmium treatment of rats during development. J Appl Toxicol 18(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Dietrich KN et al (1993) The developmental consequences of low to moderate prenatal and postnatal lead exposure: intellectual attainment in the Cincinnati Lead Study Cohort following school entry. Neurotoxicol Teratol 15(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Djukić-Cosić D et al (2006) Effect of supplemental magnesium on the kidney levels of cadmium, zinc, and copper of mice exposed to toxic levels of cadmium. Biol Trace Elem Res 114(1–3):281–291

    Article  PubMed  Google Scholar 

  • Drobna Z et al (2009) Metabolism of arsenic in human liver: the role of membrane transporters. Arch Toxicol 84(1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Du X et al (2012) Overexpression of ZAC impairs glucose-stimulated insulin translation and secretion in clonal pancreatic beta-cells. Diabetes Metab Res Rev 28(8):645–653

    Article  CAS  PubMed  Google Scholar 

  • Dutczak WJ, Ballatori N (1992) gamma-Glutamyltransferase-dependent biliary-hepatic recycling of methyl mercury in the guinea pig. J Pharmacol Exp Ther 262(2):619–623

    CAS  PubMed  Google Scholar 

  • Dutczak WJ, Ballatori N (1994) Transport of the glutathione-methylmercury complex across liver canalicular membranes on reduced glutathione carriers. J Biol Chem 269(13):9746–9751

    CAS  PubMed  Google Scholar 

  • Esquifino AI et al (1999) Effects of chronic alternating cadmium exposure on the episodic secretion of prolactin in male rats. J Trace Elem Med Biol 12(4):205–210

    Article  CAS  PubMed  Google Scholar 

  • Feki-Tounsi M, Hamza-Chaffai A (2014) Cadmium as a possible cause of bladder cancer: a review of accumulated evidence. Environ Sci Pollut Res Int 21(18):10561–10573

    Article  CAS  PubMed  Google Scholar 

  • Ferraro PM et al (2012) Temporal trend of cadmium exposure in the United States population suggests gender specificities. Intern Med J 42(6):691–697

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald WF, Clarkson TW (1991) Mercury and monomethylmercury: present and future concerns. Environ Health Perspect 96:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friberg L, Skog E, Wahlberg JE (1961) Resorption of mercuric chloride and methyl mercury dicyandiamide in guinea-pigs through normal skin and through skin pretreated with acetone, alkylaryl-sulphonate and soap. Acta Derm Venereol 41:40–52

    CAS  PubMed  Google Scholar 

  • Gadhia SR, Calabro AR, Barile FA (2012) Trace metals alter DNA repair and histone modification pathways concurrently in mouse embryonic stem cells. Toxicol Lett 212(2):169–179

    Article  CAS  PubMed  Google Scholar 

  • Galazyn-Sidorczuk M, Brzóska MM, Moniuszko-Jakoniuk J (2008) Estimation of Polish cigarettes contamination with cadmium and lead, and exposure to these metals via smoking. Environ Monit Assess 137(1–3):481–493

    Article  CAS  PubMed  Google Scholar 

  • Gallagher CM, Meliker JR (2010) Blood and urine cadmium, blood pressure, and hypertension: a systematic review and meta-analysis. Environ Health Perspect 118(12):1676–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher CM, Chen JJ, Kovach JS (2010) Environmental cadmium and breast cancer risk. Aging (Albany NY) 2(11):804–814

    Article  CAS  Google Scholar 

  • Gallagher CM, Chen JJ, Kovach JS (2011) The relationship between body iron stores and blood and urine cadmium concentrations in US never-smoking, non-pregnant women aged 20–49 years. Environ Res 111(5):702–707

    Article  CAS  PubMed  Google Scholar 

  • Ganeshan M et al (2011) Maternal manganese restriction increases susceptibility to high-fat diet-induced dyslipidemia and altered adipose function in WNIN male rat offspring. Exp Diabetes Res 2011:486316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill KD, Pal R, Nath R (1989) Effect of cadmium on lipid peroxidation and antioxidant enzymes in undernourished weanling rat brain. Pharmacol Toxicol 65(1):73–77

    Article  CAS  PubMed  Google Scholar 

  • Godt J et al (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodrich JM et al (2013) Mercury biomarkers and DNA methylation among Michigan dental professionals. Environ Mol Mutagen 54(3):195–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber JF et al (2012) Associations between toenail arsenic concentration and dietary factors in a New Hampshire population. Nutr J 11:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Romero F, Rodríguez-Morán M (2002) Low serum magnesium levels and metabolic syndrome. Acta Diabetol 39(4):209–213

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Romero F, Rodríguez-Morán M (2006) Hypomagnesemia, oxidative stress, inflammation, and metabolic syndrome. Diabetes Metab Res Rev 22(6):471–476

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Romero F, Rodríguez-Morán M (2011) Magnesium improves the beta-cell function to compensate variation of insulin sensitivity: double-blind, randomized clinical trial. Eur J Clin Invest 41(4):405–410

    Article  CAS  PubMed  Google Scholar 

  • Guidotti TL, McNamara J, Moses MS (2008) The interpretation of trace element analysis in body fluids. Indian J Med Res 128(4):524–532

    CAS  PubMed  Google Scholar 

  • Gupta A, Shukla GS (1996) Ontogenic profile of brain lipids following perinatal exposure to cadmium. J Appl Toxicol 16(3):227–233

    Article  CAS  PubMed  Google Scholar 

  • Hall MN et al (2009) Folate, cobalamin, cysteine, homocysteine, and arsenic metabolism among children in Bangladesh. Environ Health Perspect 117(5):825–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwig A (1998) Carcinogenicity of metal compounds: possible role of DNA repair inhibition. Toxicol Lett 102–103:235–239

    Article  PubMed  Google Scholar 

  • Hartwig A (2001) Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal 3(4):625–634

    Article  CAS  PubMed  Google Scholar 

  • Hartwig A et al (2002) Interference by toxic metal ions with zinc-dependent proteins involved in maintaining genomic stability. Food Chem Toxicol 40(8):1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Hartwig A et al (2003) Very low concentrations of arsenite suppress poly(ADP-ribosyl)ation in mammalian cells. Int J Cancer 104(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Hartwig A, Schwerdtle T, Bal W (2010) Biophysical analysis of the interaction of toxic metal ions and oxidants with the zinc finger domain of XPA. Methods Mol Biol 649:399–410

    Article  CAS  PubMed  Google Scholar 

  • Hattula T, Rahola T (1975) The distribution and biological half-time of 203Hg in the human body according to a modified whole-body counting technique. Environ Physiol Biochem 5(4):252–257

    CAS  PubMed  Google Scholar 

  • Heck JE et al (2007) Consumption of folate-related nutrients and metabolism of arsenic in Bangladesh. Am J Clin Nutr 85(5):1367–1374

    CAS  PubMed  Google Scholar 

  • Heijmans BT et al (2009) The epigenome: archive of the prenatal environment. Epigenetics 4(8):526–531

    Article  CAS  PubMed  Google Scholar 

  • Hendrick DJ (1996) Occupational and chronic obstructive pulmonary disease (COPD). Thorax 51(9):947–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herba E et al (2001) The effect of serotonin on flash visual evoked potential in the rat prenatally exposed to cadmium. Klin Oczna 103(2–3):81–84

    CAS  PubMed  Google Scholar 

  • Ho SM et al (2012) Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J 53(3–4):289–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoyo C, Murphy SK, Jirtle RL (2009) Imprint regulatory elements as epigenetic biosensors of exposure in epidemiological studies. J Epidemiol Community Health 63(9):683–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoyo C et al (2012) Association of cord blood methylation fractions at imprinted insulin-like growth factor 2 (IGF2), plasma IGF2, and birth weight. Cancer Causes Control 23(4):635–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang M et al (2013) Evaluation of factors associated with cadmium exposure and kidney function in the general population. Environ Toxicol 28(10):563–570

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli I et al (2004) Effects of low doses of dietary lead on puberty onset in female mice. Reprod Toxicol 19(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli I et al (2006) Low doses of dietary lead are associated with a profound reduction in the time to the onset of puberty in female mice. Reprod Toxicol 22(4):586–590

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev 12(3):206–223

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Platas I et al (2014) Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta. Hum Mol Genet 23(23):6275–6285

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang G et al (2008) Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology 244(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23(5):783–792

    Article  CAS  PubMed  Google Scholar 

  • Joseph P et al (2001) Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species. Toxicol Sci 61(2):295–303

    Article  CAS  PubMed  Google Scholar 

  • Joubert BR et al (2012) 450 K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120(10):1425–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kala SV et al (2004) Formation and urinary excretion of arsenic triglutathione and methylarsenic diglutathione. Chem Res Toxicol 17(2):243–249

    Article  CAS  PubMed  Google Scholar 

  • Kalia K, Flora SJ (2005) Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 47(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Karim MR et al (2013) Increases in oxidized low-density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high-density lipoprotein in the individuals exposed to arsenic in Bangladesh. Toxicol Sci 135(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Katzen-Luchenta J (2007) The declaration of nutrition, health, and intelligence for the child-to-be. Nutr Health 19(1–2):85–102

    Article  PubMed  Google Scholar 

  • Kazantzis G (2004) Cadmium, osteoporosis and calcium metabolism. Biometals 17(5):493–498

    Article  CAS  PubMed  Google Scholar 

  • Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Kent WJ et al (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon EM, Del Razo LM, Hughes MF (2005) Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in mice following acute oral administration of arsenate. Toxicol Sci 85(1):468–475

    Article  CAS  PubMed  Google Scholar 

  • Kerper LE, Ballatori N, Clarkson TW (1992) Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Physiol 262(5 Pt 2):R761–R765

    CAS  PubMed  Google Scholar 

  • King K, Murphy S, Hoyo C (2015) Epigenetic regulation of Newborns’ imprinted genes related to gestational growth: patterning by parental race/ethnicity and maternal socioeconomic status. J Epidemiol Community Health 69(7):639–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitchin KT, Wallace K (2005) Arsenite binding to synthetic peptides based on the Zn finger region and the estrogen binding region of the human estrogen receptor-alpha. Toxicol Appl Pharmacol 206(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Kitchin KT, Wallace K (2006) Arsenite binding to synthetic peptides: the effect of increasing length between two cysteines. J Biochem Mol Toxicol 20(1):35–38

    Article  CAS  PubMed  Google Scholar 

  • Koedrith P et al (2013) Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health 216(5):587–598

    Article  CAS  PubMed  Google Scholar 

  • Kojima C et al (2009) Requirement of arsenic biomethylation for oxidative DNA damage. J Natl Cancer Inst 101(24):1670–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komolova M et al (2008) Sedentariness and increased visceral adiposity in adult perinatally iron-deficient rats. Int J Obes (Lond) 32(9):1441–1444

    Article  CAS  Google Scholar 

  • Korpela H et al (1986) Lead and cadmium concentrations in maternal and umbilical cord blood, amniotic fluid, placenta, and amniotic membranes. Am J Obstet Gynecol 155(5):1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Kosnett MJ (2010) Chelation for heavy metals (arsenic, lead, and mercury): protective or perilous? Clin Pharmacol Ther 88(3):412–415

    Article  CAS  PubMed  Google Scholar 

  • Kosnett MJ (2013) The role of chelation in the treatment of arsenic and mercury poisoning. J Med Toxicol 9(4):347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo CC et al (2013) Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diab Rep 13(6):831–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafuente A, Esquifino AI (1999) Cadmium effects on hypothalamic activity and pituitary hormone secretion in the male. Toxicol Lett 110(3):209–218

    Article  CAS  PubMed  Google Scholar 

  • Lafuente A et al (1999) Cadmium affects the episodic luteinizing hormone secretion in male rats: possible age-dependent effects. Toxicol Lett 104(1–2):27–33

    Article  CAS  PubMed  Google Scholar 

  • Lambrou A et al (2012) Arsenic exposure and DNA methylation among elderly men. Epidemiology 23(5):668–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Lampe BJ et al (2008) Association between 24-hour urinary cadmium and pulmonary function among community-exposed men: the VA Normative Aging Study. Environ Health Perspect 116(9):1226–1230

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2003) Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-jun chromatin in human diploid fibroblasts. J Biol Chem 278(15):13183–13191

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2008) Metal-coupled folding of Cys2His2 zinc-finger. J Am Chem Soc 130(3):892–900

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2015) Lead exposure during early human development and DNA methylation of imprinted gene regulatory elements in adulthood. Environ Health Perspect

    Google Scholar 

  • Liang Y et al (2012) Renal function after reduction in cadmium exposure: an 8-year follow-up of residents in cadmium-polluted areas. Environ Health Perspect 120(2):223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126(Pt 1):5–19

    Article  PubMed  Google Scholar 

  • Liu J et al (2001) Overexpression of glutathione S-transferase II and multidrug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol Pharmacol 60(2):302–309

    CAS  PubMed  Google Scholar 

  • Liu J et al (2002) Multidrug-resistance mdr1a/1b double knockout mice are more sensitive than wild type mice to acute arsenic toxicity, with higher arsenic accumulation in tissues. Toxicology 170(1–2):55–62

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2013) UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat Commun 4:1563

    Article  PubMed  CAS  Google Scholar 

  • Magos L et al (1985) The comparative toxicology of ethyl- and methylmercury. Arch Toxicol 57(4):260–267

    Article  CAS  PubMed  Google Scholar 

  • Marlowe M, Errera J, Jacobs J (1983) Increased lead and cadmium burdens among mentally retarded children and children with borderline intelligence. Am J Ment Defic 87(5):477–483

    CAS  PubMed  Google Scholar 

  • Marlowe M et al (1985) Main and interaction effects of metallic toxins on classroom behavior. J Abnorm Child Psychol 13(2):185–198

    Article  CAS  PubMed  Google Scholar 

  • Marsh DO et al (1987) Fetal methylmercury poisoning. Relationship between concentration in single strands of maternal hair and child effects. Arch Neurol 44(10):1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. Biomed Res Int 2014:840547

    PubMed  PubMed Central  Google Scholar 

  • Mass MJ, Wang L (1997) Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res 386(3):263–277

    Article  CAS  PubMed  Google Scholar 

  • McKay JA, Mathers JC (2011) Diet induced epigenetic changes and their implications for health. Acta Physiol (Oxf) 202(2):103–118

    Article  CAS  Google Scholar 

  • McNeill DR et al (2004) Inhibition of Ape1 nuclease activity by lead, iron, and cadmium. Environ Health Perspect 112(7):799–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mead MN (2010) Cadmium confusion: do consumers need protection? Environ Health Perspect 118(12):a528–a534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M (2016) Chronic exposure to arsenic and cardiometabolic risk – a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124(1):104–111

    Google Scholar 

  • Menzie CM et al (2008) Obesity-related hypoferremia is not explained by differences in reported intake of heme and nonheme iron or intake of dietary factors that can affect iron absorption. J Am Diet Assoc 108(1):145–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Méplan C, Mann K, Hainaut P (1999) Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol Chem 274(44):31663–31670

    Article  PubMed  Google Scholar 

  • Miura T, Satoh T, Takeuchi H (1998) Role of metal-ligand coordination in the folding pathway of zinc finger peptides. Biochim Biophys Acta 1384(1):171–179

    Article  CAS  PubMed  Google Scholar 

  • Moller-Madsen B, Danscher G (1986) Localization of mercury in CNS of the rat. I. Mercuric chloride (HgCl2) per os. Environ Res 41(1):29–43

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee G et al (2014) Glucagon-reactive Islet-infiltrating CD8 T Cells in NOD mice. Immunology 144:631–640

    Article  CAS  Google Scholar 

  • Murphy SK et al (2012) Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 494(1):36–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrot T et al (2010) Occupational cadmium exposure and calcium excretion, bone density, and osteoporosis in men. J Bone Miner Res 25(6):1441–1445

    Article  CAS  PubMed  Google Scholar 

  • Needham LL et al (2011) Partition of environmental chemicals between maternal and fetal blood and tissues. Environ Sci Technol 45(3):1121–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needleman HL (2004) Low level lead exposure and the development of children. Southeast Asian J Trop Med Public Health 35(2):252–254

    CAS  PubMed  Google Scholar 

  • Niedzwiecki MM et al (2013) A dose-response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Environ Health Perspect 121(11–12):1306–1312

    PubMed  PubMed Central  Google Scholar 

  • Nordstrom DK (2002) Public health. Worldwide occurrences of arsenic in ground water. Science 296(5576):2143–2145

    Article  CAS  PubMed  Google Scholar 

  • Nye MD et al (2013) Associations between methylation of paternally expressed gene 3 (PEG3), cervical intraepithelial neoplasia and invasive cervical cancer. PLoS One 8(2):e56325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nye MD et al (2015) Maternal blood lead concentrations, DNA methylation of DLK1/MEG3 imprinted domain and early growth in a multiethnic cohort. Under Rev

    Google Scholar 

  • Patrick L (2006) Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern Med Rev 11(1):2–22

    PubMed  Google Scholar 

  • Paul S, Giri AK (2015) Epimutagenesis: a prospective mechanism to remediate arsenic-induced toxicity. Environ Int 81:8–17

    Article  CAS  PubMed  Google Scholar 

  • Perkins M et al (2014) Very low maternal lead level in pregnancy and birth outcomes in an eastern Massachusetts population. Ann Epidemiol 24(12):915–919

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer WC et al (1989) Mercury concentrations in inland waters of gold-mining areas in Rondonia, Brazil. Sci Total Environ 87–88:233–240

    Article  PubMed  Google Scholar 

  • Pihl RO, Parkes M (1977) Hair element content in learning disabled children. Science 198(4313):204–206

    Article  CAS  PubMed  Google Scholar 

  • Pilsner JR et al (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Mol Ecol 19(2):307–314

    Article  CAS  PubMed  Google Scholar 

  • Piomelli S (2002) Childhood lead poisoning. Pediatr Clin North Am 49(6):1285–1304, vii

    Article  PubMed  Google Scholar 

  • Pollard KM, Hultman P (1997) Effects of mercury on the immune system. Met Ions Biol Syst 34:421–440

    CAS  PubMed  Google Scholar 

  • Rabito FA et al (2014) Changes in low levels of lead over the course of pregnancy and the association with birth outcomes. Reprod Toxicol 50:138–144

    Article  CAS  PubMed  Google Scholar 

  • Ramirez T et al (2008) Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma 117(2):147–157

    Article  CAS  PubMed  Google Scholar 

  • Rappa G et al (1997) Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins. Cancer Res 57(23):5232–5237

    CAS  PubMed  Google Scholar 

  • Razmiafshari M et al (2001) NMR identification of heavy metal-binding sites in a synthetic zinc finger peptide: toxicological implications for the interactions of xenobiotic metals with zinc finger proteins. Toxicol Appl Pharmacol 172(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Ren X et al (2011) An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect 119(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner R (2010) Exposure on tap: drinking water as an overlooked source of lead. Environ Health Perspect 118(2):A68–A72

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds LP et al (2006) Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol 572(Pt 1):51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronis MJ, Gandy J, Badger T (1998) Endocrine mechanisms underlying reproductive toxicity in the developing rat chronically exposed to dietary lead. J Toxicol Environ Health A 54(2):77–99

    Article  CAS  PubMed  Google Scholar 

  • Rooney JP (2013) The retention time of inorganic mercury in the brain – a systematic review of the evidence. Toxicol Appl Pharmacol 274(3):425–435

    Article  PubMed  CAS  Google Scholar 

  • Rossman TG, Klein CB (2011) Genetic and epigenetic effects of environmental arsenicals. Metallomics 3(11):1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Sahmoun AE et al (2005) Cadmium and prostate cancer: a critical epidemiologic analysis. Cancer Invest 23(3):256–263

    Article  CAS  PubMed  Google Scholar 

  • Said S, Hernandez GT (2015) Environmental exposures, socioeconomics, disparities, and the kidneys. Adv Chronic Kidney Dis 22(1):39–45

    Article  PubMed  Google Scholar 

  • Sanchez A et al (2015) Micronutrient deficiencies in morbidly obese women prior to bariatric surgery. Obes Surg

    Google Scholar 

  • Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112(10):1099–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders T et al (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24(1):15–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders AP et al (2014) Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 9(2):212–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar B (1995) Metal replacement in DNA-binding zinc finger proteins and its relevance to mutagenicity and carcinogenicity through free radical generation. Nutrition 11(5 Suppl):646–649

    CAS  PubMed  Google Scholar 

  • Satarug S, Moore MR (2012) Emerging roles of cadmium and heme oxygenase in type-2 diabetes and cancer susceptibility. Tohoku J Exp Med 228(4):267–288

    Article  CAS  PubMed  Google Scholar 

  • Schober SE et al (2006) Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ Health Perspect 114(10):1538–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwerdtle T, Walter I, Hartwig A (2003) Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg. DNA Repair (Amst) 2(12):1449–1463

    Article  CAS  Google Scholar 

  • Schwerdtle T et al (2010) Genotoxicity of soluble and particulate cadmium compounds: impact on oxidative DNA damage and nucleotide excision repair. Chem Res Toxicol 23(2):432–442

    Article  CAS  PubMed  Google Scholar 

  • Scinicariello F, Abadin HG, Murray HE (2011) Association of low-level blood lead and blood pressure in NHANES 1999–2006. Environ Res 111(8):1249–1257

    Article  CAS  PubMed  Google Scholar 

  • Shiobara Y, Ogra Y, Suzuki KT (2001) Animal species difference in the uptake of dimethylarsinous acid (DMA(III)) by red blood cells. Chem Res Toxicol 14(10):1446–1452

    Article  CAS  PubMed  Google Scholar 

  • Shraim A et al (2003) Arsenic speciation in the urine and hair of individuals exposed to airborne arsenic through coal-burning in Guizhou, PR China. Toxicol Lett 137(1–2):35–48

    Article  CAS  PubMed  Google Scholar 

  • Silbergeld EK et al (1993) Lead in bone: storage site, exposure source, and target organ. Neurotoxicology 14(2–3):225–236

    CAS  PubMed  Google Scholar 

  • Sivaprasad TR, Malarkodi SP, Varalakshmi P (2004) Therapeutic efficacy of lipoic acid in combination with dimercaptosuccinic acid against lead-induced renal tubular defects and on isolated brush-border enzyme activities. Chem Biol Interact 147(3):259–271

    Article  CAS  PubMed  Google Scholar 

  • Skinner MK (2014) Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol 398:4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeester L et al (2011) Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol 24(2):165–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeester L et al (2014) Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury. Genes (Basel) 5(2):477–496

    Google Scholar 

  • Smith SW (2013) The role of chelation in the treatment of other metal poisonings. J Med Toxicol 9(4):355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somji S et al (2011) Differences in the epigenetic regulation of MT-3 gene expression between parental and Cd + 2 or As + 3 transformed human urothelial cells. Cancer Cell Int 11(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spruill MD et al (2002) Proto-oncogene amplification and overexpression in cadmium-induced cell transformation. J Toxicol Environ Health A 65(24):2131–2144

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Ortegón MF et al (2013) Nutrients intake as determinants of blood lead and cadmium levels in Colombian pregnant women. Am J Hum Biol 25(3):344–350

    Article  PubMed  Google Scholar 

  • Sun HJ et al (2014) Arsenic and selenium toxicity and their interactive effects in humans. Environ Int 69:148–158

    Article  CAS  PubMed  Google Scholar 

  • Suzuki KT et al (2004) Distributions and chemical forms of arsenic after intravenous administration of dimethylarsinic and monomethylarsonic acids to rats. Toxicol Appl Pharmacol 198(3):336–344

    Article  CAS  PubMed  Google Scholar 

  • Syversen T, Kaur P (2012) The toxicology of mercury and its compounds. J Trace Elem Med Biol 26(4):215–226

    Article  CAS  PubMed  Google Scholar 

  • Takiguchi M et al (2003) Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286(2):355–365

    Article  CAS  PubMed  Google Scholar 

  • Tellez-Plaza M et al (2013) Cadmium exposure and clinical cardiovascular disease: a systematic review. Curr Atheroscler Rep 15(10):356

    Article  PubMed  CAS  Google Scholar 

  • Thatcher RW et al (1982) Effects of low levels of cadmium and lead on cognitive functioning in children. Arch Environ Health 37(3):159–166

    Article  CAS  PubMed  Google Scholar 

  • Thatcher RW, McAlaster R, Lester ML (1984) Evoked potentials related to hair cadmium and lead in children. Ann N Y Acad Sci 425:384–390

    Article  CAS  PubMed  Google Scholar 

  • Tokar EJ, Benbrahim-Tallaa L, Waalkes MP (2011) Metal ions in human cancer development. Met Ions Life Sci 8:375–401

    CAS  PubMed  Google Scholar 

  • Tsang V et al (2012) The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. Toxicol Appl Pharmacol 264(3):439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahter M, Marafante E (1987) Effects of low dietary intake of methionine, choline or proteins on the biotransformation of arsenite in the rabbit. Toxicol Lett 37(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Varrault A et al (2006) Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 11(5):711–722

    Article  CAS  PubMed  Google Scholar 

  • Vidal AC et al (2015) Maternal cadmium, iron and zinc levels DNA methylation and birth weight. BMC Pharmacol Toxicol 16:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vij A (2009) Hemopoietic, hemostatic and mutagenic effects of lead and possible prevention by zinc and vitamin C. Al Ameen J Med Sci 2:27–36

    CAS  Google Scholar 

  • Wadi SA, Ahmad G (1999) Effects of lead on the male reproductive system in mice. J Toxicol Environ Health A 56(7):513–521

    Article  CAS  PubMed  Google Scholar 

  • Wallia A et al (2014) Association between urinary cadmium levels and prediabetes in the NHANES 2005–2010 population. Int J Hyg Environ Health 217(8):854–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Fowler BA (2008) Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicol Appl Pharmacol 233(1):92–99

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al (2015) Redistribution of subcellular calcium and its effect on apoptosis in primary cultures of rat proximal tubular cells exposed to lead. Toxicology 333:137–146

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Hirano S (2012) Metabolism of arsenic and its toxicological relevance. Arch Toxicol 87(6):969–979

    Article  PubMed  CAS  Google Scholar 

  • Wildman RE, Mao S (2001) Tissue-specific alterations in lipoprotein lipase activity in copper-deficient rats. Biol Trace Elem Res 80(3):221–229

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (1992) Environmental Health Criteria 134 and 135. Cadmium – environmental health aspects. World Health Organization, Geneva. ISBN 92 1571392, p 156

    Google Scholar 

  • Wright JP et al (2008) Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med 5(5):e101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J et al (2008) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 28(1):3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanoff LB et al (2007) Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes (Lond) 31(9):1412–1419

    Article  CAS  Google Scholar 

  • Yin Z et al (2008) The methylmercury-L-cysteine conjugate is a substrate for the L-type large neutral amino acid transporter. J Neurochem 107(4):1083–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan W et al (2006) The impact of early childhood lead exposure on brain organization: a functional magnetic resonance imaging study of language function. Pediatrics 118(3):971–977

    Article  PubMed  Google Scholar 

  • Zakharyan RA, Wildfang E, Aposhian HV (1996) Enzymatic methylation of arsenic compounds. III. The marmoset and tamarin, but not the rhesus, monkeys are deficient in methyltransferases that methylate inorganic arsenic. Toxicol Appl Pharmacol 140(1):77–84

    Article  CAS  Google Scholar 

  • Zhao CQ et al (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A 94(20):10907–10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong CX, Mass MJ (2001) Both hypomethylation and hypermethylation of DNA associated with arsenite exposure in cultures of human cells identified by methylation-sensitive arbitrarily-primed PCR. Toxicol Lett 122(3):223–234

    Article  CAS  PubMed  Google Scholar 

  • Zhou X et al (2008) Arsenite alters global histone H3 methylation. Carcinogenesis 29(9):1831–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X et al (2011) Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. J Biol Chem 286(26):22855–22863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathrine Hoyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skaar, D.A., Murphy, S.K., Hoyo, C. (2016). Effects of Environmentally Acquired Heavy Metals and Nutrients on the Epigenome and Phenotype. In: Hughes, C., Waters, M. (eds) Translational Toxicology. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-27449-2_5

Download citation

Publish with us

Policies and ethics