Compiling Collapsing Rules in Certain Constructor Systems

  • Sergio AntoyEmail author
  • Andy Jost
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9527)


The implementation of functional logic languages by means of graph rewriting requires a special handling of collapsing rules. Recent advances about the notion of a needed step in some constructor systems offer a new approach to this problem. We present two results: a transformation of a certain class of constructor-based rewrite systems that eliminates collapsing rules, and a rewrite-like relation that takes advantage of the absence of collapsing rules. We formally state and prove the correctness of these results. When used together, these results simplify without any loss of efficiency an implementation of graph rewriting and consequently of functional logic computations.


Collapse Rule Graph Rewriting Functional Logic Programs Rewriting System Forwarding Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This material is based upon work partially supported by the National Science Foundation under Grant No. CCF-1317249. Michael Hanus provided valuable comments on a preliminary version of this paper.


  1. 1.
    Alpuente, M., Falaschi, M., Vidal, G.: Partial evaluation of functional logic programs. ACM Trans. Program. Lang. Syst. 20(4), 768–844 (1998)CrossRefGoogle Scholar
  2. 2.
    Antoy, S.: Definitional trees. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632. Springer, Heidelberg (1992) CrossRefGoogle Scholar
  3. 3.
    Antoy, S.: Optimal non-deterministic functional logic computations. In: Hanus, M., Heering, J., Meinke, K. (eds.) ALP 1997 and HOA 1997. LNCS, vol. 1298. Springer, Heidelberg (1997). CrossRefGoogle Scholar
  4. 4.
    Antoy, S.: Evaluation strategies for functional logic programming. J. Symb. Comput. 40(1), 875–903 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Antoy, S.: Programming with narrowing. J. Symb. Comput. 45(5), 501–522 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Antoy, S., Hanus, M.: Functional logic programming. Comm. ACM 53(4), 74–85 (2010)CrossRefGoogle Scholar
  7. 7.
    Antoy, S., Jost, A.: Are needed redexes really needed? In: Proceedings of the 15th Symposium on Principles and Practice of Declarative Programming, PPDP 2013, pp. 61–71. ACM, New York (2013)Google Scholar
  8. 8.
    Antoy, S., Peters, A.: Compiling a functional logic language: The Basic Scheme. In: Schrijvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 17–31. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Ariola, Z.M., Klop, J.W.: Equational term graph rewriting. Fundam. Inf. 26, 207–240 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ariola, Z.M., Klop, J.W., Plump, D.: Bisimilarity in term graph rewriting. Inf. Comput. 156(12), 2–24 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, J.R., Plasmeijer, M.J., Sleep, M.R.: Term graph rewriting. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE Parallel Architectures and Languages Europe. Lecture Notes in Computer Science, vol. 259, pp. 141–158. Springer, Heidelberg (1987) CrossRefGoogle Scholar
  12. 12.
    Bezem, M., Klop, J.W., de Vrijer, R.: Term Rewriting Systems. Cambridge University Press, Cambridge (2003) zbMATHGoogle Scholar
  13. 13.
    Clarke, T.J.W., Gladstone, P.J.S., MacLean, C.D., Norman, A.C.: Skim - the s, k, i reduction machine. In: Proceedings of the 1980 ACM Conference on LISP and Functional Programming, LFP 1980, pp. 128–135. ACM, New York (1980)Google Scholar
  14. 14.
    Echahed, R.: Inductively sequential term-graph rewrite systems. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  15. 15.
    Echahed, R., Janodet, J.C.: On constructor-based graph rewriting systems. Technical Report 985-I, IMAG (1997).
  16. 16.
    Fokkink, W., van de Pol, J.: Simulation as a correct transformation of rewrite systems. In: Privara, I., Ružicka, P. (eds.) MFCS 1997. LNCS, vol. 1295. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  17. 17.
    Glauert, J.R.W., Kennaway, R., Papadopoulos, G.A., Sleep, M.R.: Dactl: an experimental graph rewriting language. J. Prog. Lang. 5(1), 85–108 (1997)Google Scholar
  18. 18.
    Hanus, M.: The integration of functions into logic programming: from theory to practice. J. Log. Program. 19&20, 583–628 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hanus, M.: Functional logic programming: from theory to curry. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123–168. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    Hanus, M.: PAKCS 1.11.4: The Portland Aachen Kiel Curry System (2014).
  21. 21.
    Huet, G., Lévy, J.-J.: Computations in orthogonal term rewriting systems, I. In: Lassez, J.-L., Plotkin, G. (eds.) Computational logic.: Essays Honour Alan Robinson, pp. 395–414. MIT Press, Cambridge (1991)Google Scholar
  22. 22.
    Kamperman, J.F.T., Walters, H.R.: Simulating TRSs by minimal TRSs a simple, efficient, and correct compilation technique. Technical report CS-R9605, CWI (1996)Google Scholar
  23. 23.
    Kennaway, J.R., Klop, J.K., Sleep, M.R., de Vries, F.J.: The adequacy of term graph rewriting for simulating term rewriting. In: Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C.J.D. (eds.) Term Graph Rewriting Theory and Practice, pp. 157–169. J. Wiley & Sons, Chichester (1993)Google Scholar
  24. 24.
    Landin, P.J.: The mechanical evaluation of expressions. Comput. J. 6(4), 308–320 (1964)CrossRefzbMATHGoogle Scholar
  25. 25.
    Plump, D.: Term graph rewriting. In: Kreowski, H.-J., Ehrig, H., Engels, G., Rozenberg, G., (eds.) Handbook of Graph Grammars, vol. 2, pp. 3–61. World Scientific (1999)Google Scholar
  26. 26.
    Plump, D.: Essentials of term graph rewriting. Electr. Notes Theor. Comput. Sci. 51, 277–289 (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C.J.D. (eds.): Term Graph Rewriting Theory and Practice. J. Wiley & Sons, Chichester (1993)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Computer Science DepartmentPortland State UniversityPortlandUSA

Personalised recommendations