Skip to main content

Classification Cascades of Overlapping Feature Ensembles for Energy Time Series Data

  • Conference paper
  • First Online:
Data Analytics for Renewable Energy Integration (DARE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9518))

Abstract

The classification of high-dimensional time series data can be a challenging task due to the curse-of-dimensionality problem. The classification of time series is relevant in various applications, e.g., in the task of learning meta-models of feasible schedules for flexible components in the energy domain. In this paper, we introduce a classification approach that employs a cascade of classifiers based on features of overlapping time series steps. To evaluate the feasibility of the whole time series, each overlapping pattern is evaluated and the results are aggregated. We apply the approach to the problem of combined heat and power plant operation schedules and an artificial similarly structured data set. We identify conditions under which the cascade approach shows better results than a classic One-Class-SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data are available for download on our department website http://www.uni-oldenburg.de/informatik/ui/forschung/themen/cascade/.

  2. 2.

    \(\gamma \in \{0.1, 1, 10, 50, 100, 150,200\}\).

  3. 3.

    \(\nu \in \{0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2\}\).

  4. 4.

    \(\epsilon \in \{0.01, 0.05, 0.1, 0.15, 0.2\}\).

  5. 5.

    \(k_t \in \{1,5,10,15\}\).

References

  1. Al-Hmouz, R., Pedrycz, W., Balamash, A., Morfeq, A.: Description and classification of granular time series. Soft. Comput. 19(4), 1003–1017 (2015)

    Article  Google Scholar 

  2. Attenberg, J., Ertekin, C.: Class Imbalance and Active Learning. Wiley, Hoboken (2013)

    Book  Google Scholar 

  3. Bagnall, A., Davis, L.M., Hills, J., Lines, J.: Transformation based ensembles for time series classification. In: Proceedings of the Twelfth SIAM International Conference on Data Mining, Anaheim, California, USA, pp. 307–318, 26–28 April 2012

    Google Scholar 

  4. Batuwita, R., Palade, V.: Class Imbalance Learning Methods for Support Vector Machines. Wiley, New York (2013)

    Book  Google Scholar 

  5. Beygelzimer, A., Dani, V., Hayes, T., Langford, J., Zadrozny, B.: Error limiting reductions between classification tasks. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 49–56. ACM, New York (2005)

    Google Scholar 

  6. Blagus, R., Lusa, L.: Class prediction for high-dimensional class-imbalanced data. BMC Bioinform. 11(1), 523 (2010)

    Article  Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  8. Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distributed energy resources’ feasible load spaces. In: Innovative Smart Grid Technologies Conference Europe IEEE PES (2010)

    Google Scholar 

  9. Bremer, J., Sonnenschein, M.: Model-based integration of constrained search spaces into distributed planning of active power provision. Comput. Sci. Inf. Syst. 10(4), 1823–1854 (2013)

    Article  Google Scholar 

  10. Buck, D.K., Collins, A.A.: POV-Ray - The Persistence of Vision Raytracer (2004). Computer software available from http://www.povray.org/

  11. Castillo-Cagigal, M., Martín, E.C., Matallanas, E., Masa-Bote, D., Gutiérrez, A., Monasterio-Huelin, F., Jiménez-Leube, J.: PV self-consumption optimization with storage and active DSM for the residential sector. Sol. Energ. 85(9), 2338–2348 (2011)

    Article  Google Scholar 

  12. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014). 40th-year commemorative issue

    Article  Google Scholar 

  13. Engel, D., Hüttenberger, L., Hamann, B.: A survey of dimension reduction methods for high-dimensional data analysis and visualization. In: Garth, C., Middel, A., Hagen, H. (eds.) Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning. Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011, volume 27 of OpenAccess Series in Informatics (OASIcs), pp. 135–149. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2012)

    Google Scholar 

  14. Fulcher, B., Jones, N.: Highly comparative feature-based time-series classification. IEEE Trans. Knowl. Data Eng. 26(12), 3026–3037 (2014)

    Article  Google Scholar 

  15. Fulcher, B.D., Little, M.A., Jones, N.S.: Highly comparative time-series analysis: the empirical structure of time series and their methods. J. R. Soc. Interface, 10(83) (2013)

    Google Scholar 

  16. He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  17. He, X., Mourot, G., Maquin, D., Ragot, J., Beauseroy, P., Smolarz, A., Grall-Maës, E.: Multi-task learning with one-class SVM. Neurocomputing 133, 416–426 (2014)

    Article  Google Scholar 

  18. Hinrichs, C., Sonnenschein, M., Lehnhoff, S.: Evaluation of a self-organizing heuristic for interdependent distributed search spaces vol. 1 - agents. In: Filipe, J., Fred, A.L.N. (eds.) International Conference on Agents and Artificial Intelligence (ICAART 2013), pp. 25–34. SciTePress, Germany (2013)

    Google Scholar 

  19. Hoens, T.R., Chawla, N.V.: Imbalanced Datasets: From Sampling to Classifiers. Wiley, New Jersey (2013)

    Google Scholar 

  20. Hwang, W., Runger, G., Tuv, E.: Multivariate statistical process control with artificial contrasts. IIE Trans. 39(6), 659–669 (2007)

    Article  Google Scholar 

  21. Japkowicz, N.: Assessment Metrics for Imbalanced Learning. Wiley, New Jersey (2013)

    Book  Google Scholar 

  22. Juszczak, P., Duin, R.P.W.: Selective sampling methods in one-class classification problems. In: ICANN, pp. 140–148 (2003)

    Google Scholar 

  23. Kang, J.H., Kim, S.B.: A clustering algorithm-based control chart for inhomogeneously distributed tft-lcd processes. Int. J. Prod. Res. 51(18), 5644–5657 (2013)

    Article  Google Scholar 

  24. Lin, W.-J., Chen, J.J.: Class-imbalanced classifiers for high-dimensional data. Briefings Bioinf. 14(1), 13–26 (2013)

    Article  Google Scholar 

  25. Lines, J., Bagnall, A., Caiger-Smith, P., Anderson, S.: Classification of household devices by electricity usage profiles. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 403–412. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Liu, X.-Y., Zhou, Z.-H.: Ensemble Methods for Class Imbalance Learning. Wiley, New Jersey (2013)

    Book  Google Scholar 

  27. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)

    Article  Google Scholar 

  28. MacDougall, P., Roossien, B., Warmer, C., Kok, K.: Quantifying flexibility for smart grid services. In: Power and Energy Society General Meeting (PES), 2013 IEEE, pp. 1–5, July 2013

    Google Scholar 

  29. Molina, J.M., Garcia, J., Garcia, A.C.B., Melo, R., Correia, L.: Segmentation and classification of time-series: real case studies. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 743–750. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Piao, Y., Park, H.W., Jin, C.H., Ryu, K.H.: Ensemble method for classification of high-dimensional data. In: 2014 International Conference on Big Data and Smart Computing (BIGCOMP), pp. 245–249, January 2014

    Google Scholar 

  32. Roossien, B.: Mathematical quantification of near realtime flexibility for smart grids, flexines d8.1. Fproject Report, Energy research Centre of the Netherlands (ECN) (2012). http://www.flexines.org/publicaties/eindrapport/BIJLAGE14a.pdf

  33. Saeys, Y., Inza, I.N., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  34. Seo, M., Oh, S.: A novel divide-and-merge classification for high dimensional datasets. Comput. Biol. Chem. 42, 23–34 (2013)

    Article  MathSciNet  Google Scholar 

  35. Sutton, C., Sindelar, M., McCallum, A.: Feature bagging: preventing weight undertraining in structured discriminative learning. IR 402, Department of Computer Science, University of Massachusetts Amherst (2005)

    Google Scholar 

  36. Tax, D.: Ddtools, the data description toolbox for matlab, version 2.1.1, July 2014

    Google Scholar 

  37. Wang, D., Parkinson, S., Miao, W., Jia, H., Crawford, C., Djilali, N.: Hierarchical market integration of responsive loads as spinning reserve. Appl. Energy 104, 229–238 (2013)

    Article  Google Scholar 

  38. Wang, Z., Zhao, Z., Weng, S., Zhang, C.: Solving one-class problem with outlier examples by SVM. Neurocomputing, 149, Part A: 100–105 (2015). Advances in neural networks Advances in Extreme Learning MachinesSelected papers from the Tenth International Symposium on Neural Networks (ISNN 2013) Selected articles from the International Symposium on Extreme Learning Machines (ELM 2013)

    Google Scholar 

  39. Wille-Haussmann, B., Erge, T., Wittwer, C.: Decentralised optimisation of cogeneration in virtual power plants. Sol. Energy 84(4), 604–611 (2010). International Conference CISBAT 2007

    Article  Google Scholar 

  40. Yang, H., King, I., Lyu, M.: Multi-task learning for one-class classification. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2010

    Google Scholar 

  41. Yu, H., Mu, C., Sun, C., Yang, W., Yang, X., Zuo, X.: Support vector machine-based optimized decision threshold adjustment strategy for classifying imbalanced data. Knowl.-Based Syst. 76, 67–78 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry for Science and Culture of Lower Saxony with the PhD program System Integration of Renewable Energy (SEE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Neugebauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Neugebauer, J., Kramer, O., Sonnenschein, M. (2015). Classification Cascades of Overlapping Feature Ensembles for Energy Time Series Data. In: Woon, W., Aung, Z., Madnick, S. (eds) Data Analytics for Renewable Energy Integration. DARE 2015. Lecture Notes in Computer Science(), vol 9518. Springer, Cham. https://doi.org/10.1007/978-3-319-27430-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27430-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27429-4

  • Online ISBN: 978-3-319-27430-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics