Skip to main content

Stem-Succulent Trees from the Old and New World Tropics

  • Chapter
  • First Online:

Part of the book series: Tree Physiology ((TREE,volume 6))

Abstract

Stem-succulent trees are common in tropical drylands. Besides their ability to store water, these trees also possess photosynthetic bark, which can re-assimilate internally respired CO2 at virtually no water cost. Both of these traits are advantageous in seasonally dry ecosystems, where plants are exposed to periods of limited water availability and, consequently, carbon gain. In most species, plants do not use the stored water in stems to buffer daily water deficits; they use this water to flush new leaves before the onset of rains. This gives an extra advantage to stem-succulent trees over other functional groups because leaves are already present when the first rain falls. Having succulent stems does not pose a mechanical constraint in these plants, rather the succulence of the tree stem can act as hydrostatic pressure against the bark, contributing to the biomechanical support of tall trees. Stem-succulent trees are also able to maintain physiological processes and growth during drought, making them good candidates to be used in reforestation of degraded arid lands.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou Kheira AA, Atta NMM (2009) Response of Jatropha curcas L. to water deficits: yield, water use efficiency and oilseed characteristics. Biomass Bioenergy 33:1343–1350

    Article  CAS  Google Scholar 

  • Achten WMJ, Maes WH, Reubens B et al (2010) Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenergy 34:667–676

    Article  Google Scholar 

  • Adie H, Yeaton RI (2013) Regeneration dynamics in arid subtropical thicket, South Africa. S Afr J Bot 88:80–85

    Article  Google Scholar 

  • Aschan G, Pfanz H (2003) Non-foliar photosynthesis—a strategy of additional carbon acquisition. Flora—Morphol Distr Funct Ecol Plants 198:81–97

    Article  Google Scholar 

  • Alvarado-Cárdenas LO (2004) Apocynaceae. In: Medina-Lemos R, Sánchez-Ken JG, García-Mendoza A, Arias-Montes S (eds) Flora del Valle de Tehuacán-Cuicatlán 38: 1–57. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Arias S, Gama-López S, Guzmán-Cruz LU, Vázquez-Benítez B (2004) Cactaceae. In: Medina-Lemos R, Sánchez-Ken JG, García-Mendoza A, Arias-Montes S (eds) Flora del Valle de Tehuacán-Cuicatlán 95: 1–235. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Ávila E, Herrera A, Tezara W (2014) Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species. Photosynthetica 52:3–15

    Article  Google Scholar 

  • Becerra JX (2005) Timing the origin and expansion of the Mexican tropical dry forest. Proc Natl Acad Sci USA 102:10919–10923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437

    Article  Google Scholar 

  • Borchert R (1996) Phenology and flowering periodicity of Neotropical dry forest species: evidence from herbarium collections. J Trop Ecol 12:65–80

    Article  Google Scholar 

  • Borchert R, Pockman WT (2005) Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiol 25:457–466

    Article  PubMed  Google Scholar 

  • Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:213–221

    Article  CAS  PubMed  Google Scholar 

  • Britton NL, Rose JN (1963) The Cactaceae, vol 1, 2. Revised edition. Dover Publications, New York

    Google Scholar 

  • Brown G, Mies BA (2012) Vegetation ecology of Socotra. Springer, Dordrecht

    Book  Google Scholar 

  • Bullock SH, Mooney HA, Medina E (1995) Seasonally dry tropical forests. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Carlquist S (1962) Theory of paedomorphosis in dicotyledonous. Phytomorphology 12:30–45

    Google Scholar 

  • Carlquist S (2001) Comparative wood anatomy. Springer, Berlin

    Book  Google Scholar 

  • Chapotin SM, Razanameharizaka JH, Holbrook NM (2006a) A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae). Am J Bot 93:1251–1264

    Article  PubMed  Google Scholar 

  • Chapotin SM, Razanameharizaka JH, Holbrook NM (2006b) Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season. New Phytol 169:549–559

    Article  PubMed  Google Scholar 

  • Chapotin SM, Razanameharizaka JH, Holbrook NM (2006c) Water relations of baobab trees (Adansonia spp. L.) during the rainy season: does stem water buffer daily water deficits? Plant Cell Environ 29:1021–1032

    Article  PubMed  Google Scholar 

  • Chaves MM, Pereira JS (1992) Water stress, CO2 and climate change. J Exp Bot 43:1131–1139

    Article  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J et al (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907–916. doi:10.1093/aob/mcf105

    Google Scholar 

  • Comstock JP, Ehleringer JR (1988) Contrasting photosynthetic behavior in leaves and twigs of Hymenoclea salsola, a Green-Twigged Warm Desert Shrub. Am J Bot 75:1360–1370

    Article  Google Scholar 

  • Coster CH (1923). Lauberneuerung und andere periodische Lebensprozesse in dem trockenen Monsungebiet Ost-Javas. Annales du Jardin botanique de Buitenzorg 33:117–189

    Google Scholar 

  • Cowling RM, Mills AJ (2011) A preliminary assessment of rain throughfall beneath Portulacaria afra canopy in subtropical thicket and its implications for soil carbon stocks. S Afr J Bot 77:236–240

    Article  Google Scholar 

  • Cuni Sanchez A, Haq N, Assogbadjo AE (2010) Variation in baobab (Adansonia digitata L.) leaf morphology and its relation to drought tolerance. Genet Resour Crop Evol 57:17–25

    Article  Google Scholar 

  • De Smedt S, Cuní Sanchez A, Van den Bilcke N et al (2012) Functional responses of baobab (Adansonia digitata L.) seedlings to drought conditions: differences between western and south-eastern Africa. Environ Exp Bot 75:181–187

    Article  Google Scholar 

  • Díaz-López L, Gimeno V, Simón I et al (2012) Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agric Water Manag 105:48–56

    Article  Google Scholar 

  • Dimmit MA (2000) Biomes and communities of the Sonoran Desert region. In: Phillips SJ, Comus PW (eds) A natural history of the Sonoran Desert. ASDM Press/University of California Press

    Google Scholar 

  • Douglas MW, Maddox RA, Kenneth H (1993) The Mexican monsoon

    Google Scholar 

  • Ehleringer JR, Comstock JP, Cooper TA (1987) Leaf-twig carbon isotope ratio differences in photosynthetic-twig desert shrubs. Oecologia 71:318–320

    Article  Google Scholar 

  • Ezcurra E, Mellink E, Wehncke E, González C, Morrison S, Warren A, Dent D, Driessen P (2006) Natural history and evolution of the world’s deserts. In: Ezcurra E (ed) Global deserts outlook. United Nations Environment Programme (UNEP), Nairobi

    Google Scholar 

  • Fallas-Cedeño L, Holbrook NM, Rocha OJ et al (2010) Phenology, lignotubers, and water relations of Cochlospermum vitifolium, a pioneer tropical dry forest tree in Costa Rica. Biotropica 42:104–111

    Article  Google Scholar 

  • Fischer E, Theisen I (2000) Vegetation of Malagasy Inselbergs. In: Porembski PDS, Barthlott PDW (eds) Inselbergs. Springer, Berlin, pp 259–276

    Chapter  Google Scholar 

  • Franco-Vizcaino E, Goldstein G, Ting IP (1990) Comparative gas exchange of leaves and bark in three stem succulents of Baja California. Am J Bot 77:1272–1278

    Article  Google Scholar 

  • García-Oliva F, Ezcurra E, Galicia L (1991) Pattern of rainfall distribution in the Central Pacific Coast of Mexico. Geografiska Annaler Ser A, Phys Geogr 73:179–186

    Article  Google Scholar 

  • Gibson AC (1978) Architectural designs of wood skeletons in cacti. Cactus Succulent J Great Britain 40:73–80

    Google Scholar 

  • Goldstein G, Andrade JL, Meinzer FC et al (1998) Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ 21:397–406

    Article  Google Scholar 

  • González-Castañeda N, Ibarra-Manríquez G (2012) Moraceae. In: Medina-Lemos R, Sánchez-Ken JG, García-Mendoza A, Arias-Montes S (eds) Flora del Valle de Tehuacán-Cuicatlán 96: 1–33. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Gordon JE, Hawthorne WD, Reyes-Garcı́a A, et al (2004) Assessing landscapes: a case study of tree and shrub diversity in the seasonally dry tropical forests of Oaxaca, Mexico and southern Honduras. Biol Conserv 117:429–442

    Google Scholar 

  • Johnston IM (1940) The Floristic Significance of Shrubs Common to North and South American Deserts. Journal of the Arnold Arboretum 21:356–363

    Google Scholar 

  • Mabberley DJ (1974) Pachycauly, vessel-elements, islands and the evolution of arborescence in “Herbaceous” families. New Phytol 73:977–984

    Article  Google Scholar 

  • Mabberley DJ (1982) On Dr Carlquist’s defence of paedomorphosis. New Phytol 90:751–755

    Article  Google Scholar 

  • Machado J-L, Tyree MT (1994) Patterns of hydraulic architecture and water relations of two tropical canopy trees with contrasting leaf phenologies: Ochroma pyramidale and Pseudobombax septenatum. Tree Physiol 14:219–240

    Article  PubMed  Google Scholar 

  • Maes WH, Achten WMJ, Reubens B et al (2009) Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J Arid Environ 73:877–884

    Article  Google Scholar 

  • Manetas Y (2004) Photosynthesizing in the rain: beneficial effects of twig wetting on corticular photosynthesis through changes in the periderm optical properties. Flora-Morphol Distr Funct Ecol Plants 199:334–341

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • Medina E (1995) Diversity of life forms of higher plants in neotropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, New York

    Google Scholar 

  • Medina-Lemos R (2008) Burseraceae. In: Medina-Lemos R, Sánchez-Ken JG, García-Mendoza A, Arias-Montes S (eds) Flora del Valle de Tehuacán-Cuicatlán 66: 1-76. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Medina-Lemos R, Fonseca RM (2009) Anacardiaceae. In: Medina-Lemos R, Sánchez-Ken JG, García-Mendoza A, Arias-Montes S (eds) Flora del Valle de Tehuacán-Cuicatlán 96: 1-33. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Muller CH (1941) The holocanthoid plants of North America. Madroño 6:128–132

    Google Scholar 

  • Nilsen E, Sharifi M (1997) Carbon isotopic composition of legumes with photosynthetic stems from mediterranean and desert habitats. Am J Bot 84:1707–1713

    Article  CAS  PubMed  Google Scholar 

  • Nilsen ET, Bao Y (1990) The influence of water stress on stem and leaf photosynthesis in Glycine max and Sparteum junceum (Leguminosae). Am J Bot 77:1007–1015

    Article  Google Scholar 

  • Nilsen ET, Sharifi MR (1994) Seasonal acclimation of stem photosynthesis in woody legume species from the Mojave and Sonoran deserts of California. Plant Physiol 105:1385–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsen ET, Meinzer FC, Rundel PW (1989) Stem photosynthesis in Psorothamnus spinosus (smoke tree) in the Sonoran desert of California. Oecologia 79:193–197

    Article  Google Scholar 

  • Nilsen ET, Sharifi MR, Rundel PW et al (1990) Water relations of stem succulent trees in north-central Baja California. Oecologia 82:299–303

    Article  Google Scholar 

  • Olson ME (2003) Stem and leaf anatomy of the arborescent Cucurbitaceae Dendrosicyos socotrana with comments on the evolution of pachycauls from lianas. Plant Syst Evol 239:199–214

    Article  Google Scholar 

  • Olvera-Luna AR, Gama-López S, Delgado-Salinas A (2012) Fabaceae. In: Medina-Lemos R, Sánchez-Ken JG, García-Mendoza A, Arias-Montes S (eds) Flora del Valle de Tehuacán- Cuicatlán 107: 1–42. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Osmond CB, Smith SD, Gui-Ying B, Sharkey TD (1987) Stem photosynthesis in a desert ephemeral, Eriogonum inflatum. Oecologia 72:542–549

    Article  Google Scholar 

  • Perea MC, Ezcurra E, León de la Luz JL (2005) Functional morphology of a sarcocaulescent desert scrub in the bay of La Paz, Baja California Sur, Mexico. J Arid Environ 62:413–426

    Article  Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299

    Google Scholar 

  • Randriamanana T, Wang F, Lehto T, Aphalo PJ (2012) Water use strategies of seedlings of three Malagasy Adansonia species under drought. S Afr J Bot 81:61–70

    Article  Google Scholar 

  • Rodríguez JP, Rojas-Suárez F (2008) Libro Rojo de la Fauna Venezolana

    Google Scholar 

  • Rodríguez JP, Rojas-Suárez F, Giraldo Hernández D (2010) Libro Rojo de Los Ecosistemas Terrestres de Venezuela

    Google Scholar 

  • Rowley G (1987) Caudiciform and pachycaul succulents: pachycauls, bottle-, barrel-and elephant-trees and their kin, 1st edn. Strawberry Press, Mill Valley, Calif

    Google Scholar 

  • Sayer EJ, Newbery DM (2003) The role of tree size in the leafing phenology of a seasonally dry tropical forest in Belize, Central America. J Trop Ecol 19:539–548

    Article  Google Scholar 

  • Schaedle M (1975) Tree photosynthesis. Annu Rev Plant Physiol 26:101–115

    Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Ludwigshausen S et al (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol

    Google Scholar 

  • Shmida A, Whittaker RH (1981) Pattern and biological Microsite effects in two shrub communities, Southern California. Ecology 62:234–251

    Article  Google Scholar 

  • Simbo DJ, Van den Bilcke N, Samson R (2013) Contribution of corticular photosynthesis to bud development in African baobab (Adansonia digitata L.) and Castor bean (Ricinus communis L.) seedlings. Environ Exp Bot 95:1–5

    Article  Google Scholar 

  • Sloan SA, Zimmerman JK, Sabat AM (2006) Phenology of Plumeria alba and its herbivores in a tropical dry forest. Biotropica 39:195–201

    Article  Google Scholar 

  • Smith SD, Osmond CB (1987) Stem photosynthesis in a desert ephemeral, Eriogonum inflatum. Morphology, stomatal conductance and water-use efficiency in field populations. Oecologia 72:533–541

    Article  Google Scholar 

  • Stensrud DJ, Gall RL, Mullen SL, Howard KW (1995) Model climatology of the Mexican monsoon. J Climate 8:1775–1794

    Article  Google Scholar 

  • Tezara W, Urich R, Coronel I et al (2010) Asimilación de carbono, eficiencia de uso de agua y actividad fotoquímica en xerófitas de ecosistemas semiáridos de Venezuela. Ecosistemas 19:67–78

    Google Scholar 

  • Tinoco-Ojanguren C (2008) Diurnal and seasonal patterns of gas exchange and carbon gain contribution of leaves and stems of Justicia californica in the Sonoran Desert. J Arid Environ 72:127–140

    Article  Google Scholar 

  • Tomlinson PB, Wheat DW (1979) Bijugate phyllotaxis in Rhizophoreae (Rhizophoraceae). Bot J Linn Soc 78:317–321

    Article  Google Scholar 

  • Van den Bilcke N, De Smedt S, Simbo DJ, Samson R (2013) Sap flow and water use in African baobab (Adansonia digitata L.) seedlings in response to drought stress. S Afr J Bot 88:438–446. doi:10.1016/j.sajb.2013.09.006

    Google Scholar 

  • Venter SM, Witkowski ETF (2010) Baobab (Adansonia digitata L.) density, size-class distribution and population trends between four land-use types in northern Venda, South Africa. For Ecol Manage 259:294–300

    Article  Google Scholar 

  • Wickens GE, Lowe P (2008) The baobabs: pachycauls of Africa, Madagascar and Australia: the pachycauls of Africa. Springer, Madagascar and Australia

    Book  Google Scholar 

  • Wiggins IL (1980) Flora of Baja California. Stanford University Press, Stanford, Calif

    Google Scholar 

  • Worbes M, Blanchart S, Fichtler E (2013) Relations between water balance, wood traits and phenological behavior of tree species from a tropical dry forest in Costa Rica-a multifactorial study. Tree Physiol 33:527–536

    Article  PubMed  Google Scholar 

  • Zohary M (1962) Plant life of Palestine: Israel and Jordan. Ronald Press Company

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleinis Ávila-Lovera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ávila-Lovera, E., Ezcurra, E. (2016). Stem-Succulent Trees from the Old and New World Tropics. In: Goldstein, G., Santiago, L. (eds) Tropical Tree Physiology. Tree Physiology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27422-5_3

Download citation

Publish with us

Policies and ethics