Skip to main content

Tree Rings in the Tropics: Insights into the Ecology and Climate Sensitivity of Tropical Trees

  • Chapter
  • First Online:
Tropical Tree Physiology

Part of the book series: Tree Physiology ((TREE,volume 6))

Abstract

Tree-ring studies provide important contributions to understanding the climate sensitivity of tropical trees and the effects of global change on tropical forests. This chapter reviews recent advances in tropical tree-ring research. In tropical lowlands, tree ring formation is mainly driven by seasonal variation in precipitation or flooding , and not in temperature. Annual ring formation has now been confirmed for 230 tropical tree species across continents and climate zones. Tree-ring studies indicate that lifespans of tropical tree species average c. 200 years and only few species live >500 years; these values are considerably lower than those based on indirect age estimates. Size-age trajectories show large and persistent growth variation among trees of the same species, due to variation in light, water and nutrient availability. Climate-growth analyses suggest that tropical tree growth is moderately sensitive to rainfall (dry years reduce growth) and temperature (hot years reduce growth). Tree-ring studies can assist in evaluating the effects of gradual changes in climatic conditions on tree growth and physiology but this requires that sampling biases are dealt with and ontogenetic changes are disentangled from temporal changes. This remains challenging, but studies have reported increases in intrinsic water use efficiency based on δ13C measurements in tree rings, most likely due to increasing atmospheric CO2. We conclude that tree-ring studies offer important insights to global change effects on tropical trees and will increasingly do so as new techniques become available and research efforts intensify.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anchukaitis KJ, Evans MN (2010) Tropical cloud forest climate variability and the demise of the Monteverde golden toad. Proc Natl Acad Sci USA 107:5036–5040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baas P, Vetter RE (1989) Growth rings in tropical trees. IAWA Bulletin (Special Issue) 10:95–174.

    Google Scholar 

  • Babst F, Alexander MR, Szejner P, Bouriaud O, Klesse S, Roden J, Ciais P, Poulter B, Frank D, Moore DJ (2014) A tree-ring perspective on the terrestrial carbon cycle. Oecologia 176:307–322

    Article  PubMed  Google Scholar 

  • Baker PJ, Bunyavejchewin S (2006) Suppression, release and canopy recruitment in five tree species from a seasonal tropical forest in western Thailand. J Trop Ecol 22:521–529

    Article  Google Scholar 

  • Baker PJ, Bunyavejchewin S, Oliver CD, Ashton PS (2005) Disturbance history and historical stand dynamics of a seasonal tropical forest in western Thailand. Ecol Monogr 75:23

    Article  Google Scholar 

  • Berlage HP (1931) Over het verband tusschen de dikte der jaarringen van djatiboomen (Tectona grandis L.f.) en den regenval op Java. Tectona 24

    Google Scholar 

  • Bigler C, Veblen TT (2009) Increased early growth rates decrease longevities of conifers in subalpine forests. Oikos 118:1130–1138

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449

    Article  Google Scholar 

  • Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247

    Article  Google Scholar 

  • Borgaonkar H, Sikder A, Ram S, Pant G (2010) El Niño and related monsoon drought signals in 523-year-long ring width records of teak (Tectona grandis L.f.) trees from south India. Palaeogeogr Palaeoclimatol Palaeoecol 285:74–84

    Article  Google Scholar 

  • Bormann FH, Berlyn G, Borman FH & Berlyn G (1981) Age and growth rate of tropical trees: new directions for research. Yale university: School of Forestry and Environmental Studies. Bulletin No. 94, New Haven.

    Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12

    Article  PubMed  Google Scholar 

  • Brienen RJW, Zuidema PA (2006) Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol 94:481–493

    Article  Google Scholar 

  • Brienen RJW, Lebrija-Trejos E, van Breugel M, Perez-Garcia EA, Bongers F, Meave JA, Martinez-Ramos M (2009) The potential of tree rings for the study of forest succession in Southern Mexico. Biotropica 41:186–195

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA, Martinez-Ramos MM (2010a) Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecologia 163:485–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Brienen RJW, Lebrija-Trejos E, Zuidema PA, MartÍnez-Ramos MM (2010b) Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob Change Biol 16:2001–2012

    Article  Google Scholar 

  • Brienen RJW, Wanek W, Hietz P (2011) Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species. Trees (Berlin) 25:103–113

    Article  CAS  Google Scholar 

  • Brienen RJW, Gloor E, Zuidema PA (2012a) Detecting evidence for CO2 fertilization from tree ring studies: the potential role of sampling biases. Global Biogeochem Cycles 26:GB1025

    Google Scholar 

  • Brienen RJW, Helle G, Pons TL, Guyot J-L, Gloor M (2012b) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability. Proc Natl Acad Sci 109:16957–16962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brienen RJW, Hietz P, Wanek W, Gloor M (2013) Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico. J Geophys Res: Biogeosci 118:1604–1615

    Article  CAS  Google Scholar 

  • Briffa K, Melvin TM (2011) A closer look at regional curve standardization of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology: progess and prospects. Springer, Dordrecht, pp 113–147

    Chapter  Google Scholar 

  • Brown PM (1996) OLDLIST: a database of maximum tree ages. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment, and humanity. Department of Geosciences, The University of Arizona, Tucson, USA, pp 727–731

    Google Scholar 

  • Buckley BM, Palakit K, Duangsathaporn K, Sanguantham P, Prasomsin P (2007) Decadal scale droughts over northwestern Thailand over the past 448 years: links to the tropical Pacific and Indian Ocean sectors. Clim Dyn 29:63–71

    Article  Google Scholar 

  • Bugmann H, Bigler C (2011) Will the CO2 fertilization effect in forests be offset by reduced tree longevity? Oecologia 165:533–544

    Article  PubMed  Google Scholar 

  • Chambers JQ, Higuchi N, Schimel JP (1998) Ancient trees in Amazonia. Nature 39:135–136

    Article  CAS  Google Scholar 

  • Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Change Biol 16:747–759

    Article  Google Scholar 

  • Coster C (1927) Zur Anatomie und Physiologie der Zuwachszonen und Jahresbildung in den Tropen I. Annales Jardim Botanica Buitenzorg 37:47–161

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436

    Article  Google Scholar 

  • De Ridder M, Van den Bulcke J, Vansteenkiste D, Van Loo D, Dierick M, Masschaele B, De Witte Y, Mannes D, Lehmann E, Beeckman H (2010) High-resolution proxies for wood density variations in Terminalia superba. Ann Bot 107:293–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong SX, Davies SJ, Ashton PS, Bunyavejchewin S, Supardi MN, Kassim AR, Tan S, Moorcroft PR (2012) Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests. Proc R Soc B: Biol Sci 279:3923–3931

    Article  Google Scholar 

  • Doughty CE, Goulden ML (2008) Are tropical forests near a high temperature threshold? J Geophys Res Biogeosci 113:G00B07

    Google Scholar 

  • Dünisch O, Puls J (2003) Changes in content of reserve materials in an evergreen, a semi-deciduous, and a deciduous Meliaceae species from the Amazon. J Appl Botany 77:10–16

    Google Scholar 

  • Dünisch O, Bauch J, Gasparotto L (2002) Formation of increment zones and intraannual growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela odorata (Meliaceae). IAWA J 23:101–119

    Article  Google Scholar 

  • Dünisch O, Montoia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees-Struct Funct 17:244–250

    Google Scholar 

  • Elliott S, Baker PJ, Borchert R (2006) Leaf flushing during the dry season: the paradox of Asian monsoon forests. Glob Ecol Biogeogr 15:248–257

    Article  Google Scholar 

  • Evans MN, Schrag DP (2004) A stable isotope-based approach to tropical dendroclimatology. Geochim Cosmochim Acta 68:3295–3305

    Article  CAS  Google Scholar 

  • FAO (2006) Global forest resources assessment 2005: progress towards sustainable forest management

    Google Scholar 

  • Fichtler E, Worbes M (2012) Wood anatomical variables in tropical trees and their relation to site conditions and individual tree morphology. IAWA J 33:119–140

    Google Scholar 

  • Fichtler E, Clark DA, Worbes M (2003) Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and C-14. Biotropica 35:306–317

    Article  Google Scholar 

  • Fichtler E, Helle G, Worbes M (2010) Stable-carbon isotope time series from tropical tree rings indicate a precipitation signal. Tree-Ring Res 66:35–49

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gebrekirstos A, Worbes M, Teketay D, Fetene M, Mitlohner R (2009) Stable carbon isotope ratios in tree rings of co-occurring species from semi-arid tropics in Africa: patterns and climatic signals. Global Planet Change 66:253–260

    Article  Google Scholar 

  • Gebrekirstos A, Bräuning A, Sass-Klassen U, Mbow C (2014) Opportunities and applications of dendrochronology in Africa. Curr Opin Environ Sustain 6:48–53

    Article  Google Scholar 

  • Geiger F (1915) Anatomische Untersuchungen uber die Jahresringbildung von Tectona grandis. Jahrbuch für Wissenschaftliche Botanik 55:521–607

    Google Scholar 

  • Gourlay ID (1995) The definition of seasonal growth zones in some African Acacia species—a review. IAWA J 16:353–359

    Article  Google Scholar 

  • Grissino-Mayer HD, Fritts HC (1997) The International Tree-Ring Data Bank: an enhanced global database serving the global scientific community. The Holocene 7:235–238

    Article  Google Scholar 

  • Groenendijk P, Sass-Klaassen U, Bongers F, Zuidema PA (2014) Potential of tree-ring analysis in a wet tropical forest: a case study on 22 commercial tree species in Central Africa. For Ecol Manage 323:65–78

    Article  Google Scholar 

  • Groenendijk P, Sleen P, Vlam M, Bunyavejchewin S, Bongers F & Zuidema PA (2015) No evidence for consistent long‐term growth stimulation of 13 tropical tree species: results from tree‐ring analysis. Glob Change Biol 21:3762–3776.  

    Google Scholar 

  • Gulbranson EL, Ryberg PE (2013) Paleobotanical and geochemical approaches to studying fossil tree rings: quantitative interpretations of paleoenvironment and ecophysiology. Palaios 28:137–140

    Article  Google Scholar 

  • Heinrich I, Weidner K, Helle G, Vos H, Banks JC (2008) Hydroclimatic variation in Far North Queensland since 1860 inferred from tree rings. Palaeogeogr Palaeoclimatol Palaeoecol 270:116–127

    Article  Google Scholar 

  • Hietz P, Wanek W, Dunisch O (2005) Long-term trends in cellulose delta C-13 and water-use efficiency of tropical Cedrela and Swietenia from Brazil. Tree Physiol 25:745–752

    Article  CAS  PubMed  Google Scholar 

  • Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ (2011) Long-term change in the nitrogen cycle of tropical forests. Science 334:664–666

    Article  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Jacoby GC (1989) Overview of tree-ring analysis in tropical regions. IAWA Bull 10:99–108

    Article  Google Scholar 

  • Landis RM, Peart DR (2005) Early performance predicts canopy attainment across life histories in subalpine forest trees. Ecology 86:63–72

    Article  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Condit R, D’Angelo S, Andrade A (2004) Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. For Ecol Manage 190:131–143

    Article  Google Scholar 

  • Li ZH, Labbé N, Driese SG, Grissino-Mayer HD (2011) Micro-scale analysis of tree-ring δ18O and δ13 C on α-cellulose spline reveals high-resolution intra-annual climate variability and tropical cyclone activity. Chem Geol 284:138–147

    Article  CAS  Google Scholar 

  • Lieberman M, Lieberman D (1985) Simulation of growth curves from periodic increment data. Ecology 66:632–635

    Article  Google Scholar 

  • Lieberman D, Lieberman M, Hartshorn GS, Peralta R (1985) Growth rates and age-size relationships of tropical wet forest trees in Costa Rica. J Trop Ecol 1:97–109

    Article  Google Scholar 

  • Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos Trans R Soc B-Biol Sci 363:1811–1817

    Article  CAS  Google Scholar 

  • Locosselli GM, Buckeridge MS, Moreira MZ, Ceccantini G (2013) A multi-proxy dendroecological analysis of two tropical species (Hymenaea spp., Leguminosae) growing in a vegetation mosaic. Trees 27:25–36

    Article  Google Scholar 

  • Loehle C (1988) Tree life-history strategies—the role of defenses. Can J For Res 18:209–222

    Article  Google Scholar 

  • López L, Villalba R (2011) Climate influences on the radial growth of Centrolobium microchaete, a valuable timber species from the tropical dry forests in Bolivia. Biotropica 43:41–49

    Article  Google Scholar 

  • López L, Villalba R, Bravo F (2013) Cumulative diameter growth and biological rotation age for seven tree species in the Cerrado biogeographical province of Bolivia. For Ecol Manage 292:49–55

    Article  Google Scholar 

  • Martinez-Ramos M, Alvarez-Buylla ER (1998) How old are tropical rain forest trees? Trends Plant Sci 3:400–405

    Article  Google Scholar 

  • Martinez-Ramos M, Alvarez-Buylla ER (1999) Reply … Tropical rain forest tree life-history diversity calls for more than one aging method. Trends Plant Sci 4:386–387

    Article  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quatern Sci Rev 23:771–801

    Article  Google Scholar 

  • Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301

    Article  Google Scholar 

  • Mendivelso HA, Camarero JJ, Obregón OR, Gutiérrez E, Toledo M (2013) Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest. PLoS ONE 8:e73855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendivelso HA, Camarero JJ, Gutiérrez E, Zuidema PA (2014) Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: short-term tolerance vs. long-term sensitivity. Agric For Meteorol 188:13–23

    Article  Google Scholar 

  • Middendorp RS, Vlam M, Rebel KT, Baker PJ, Bunyavejchewin S, Zuidema PA (2013) Disturbance history of a seasonal tropical forest in western Thailand: a spatial dendroecological analysis. Biotropica 45:578–586

    Article  Google Scholar 

  • Nehrbass-Ahles C, Babst F, Klesse S, Nötzli M, Bouriaud O, Neukom R, Dobbertin M, Frank D (2014) The influence of sampling design on tree-ring based quantification of forest growth. Glob Change Biol 20:2867–2885

    Article  Google Scholar 

  • Nock CA, Baker PJ, Wanek W, Leis A, Grabner M, Bunyavejchewin S, Hietz P (2010) Long-term increases in intrinsic water-use efficiency do not lead to increased stem growth in a tropical monsoon forest in western Thailand. Glob Change Biol 17:1049–1063

    Article  Google Scholar 

  • Ohashi S, Okada N, Nobuchi T, Siripatanadilok S, Veenin T (2009) Detecting invisible growth rings of trees in seasonally dry forests in Thailand: isotopic and wood anatomical approaches. Trees 23:813–822

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Patrut A, Von Reden KF, Lowy DA, Alberts AH, Pohlman JW, Wittmann R, Gerlach D, Xu L, Mitchell CS (2007) Radiocarbon dating of a very large African baobab. Tree Physiol 27:1569–1574

    Article  PubMed  Google Scholar 

  • Pearson S, Hua Q, Allen K, Bowman DM (2011) Validating putatively cross-dated Callitris tree-ring chronologies using bomb-pulse radiocarbon analysis. Aust J Bot 59:7–17

    Article  Google Scholar 

  • Peters RL, Groenendijk P, Vlam M, Zuidema PA (2015) Detecting long-term growth trends using tree rings: a critical evaluation of methods. Glob Change Biol 21:2040–2054

    Article  Google Scholar 

  • Poussart PF, Schrag DP (2005) Seasonally resolved stable isotope chronologies from northern Thailand deciduous trees. Earth Planet Sci Lett 235:752–765

    Article  CAS  Google Scholar 

  • Poussart PF, Evans MN, Schrag DP (2004) Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet Sci Lett 218:301–316

    Article  CAS  Google Scholar 

  • Ramírez JA, del Valle JI (2011) Paleoclima de La Guajira, Colombia; según los anillos de crecimiento de Capparis odoratissima (Capparidaceae). Revista de Biología Tropical 59:1389–1405

    PubMed  Google Scholar 

  • Ramírez JA, del Valle JI (2012) Local and global climate signals from tree rings of Parkinsonia praecox in La Guajira, Colombia. Int J Climatol 32:1077–1088

    Article  Google Scholar 

  • Rivera G, Elliott S, Caldas LS, Nicolossi G, Coradin VT, Borchert R (2002) Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445–456

    Article  Google Scholar 

  • Robertson I, Loader N, Froyd C, Zambatis N, Whyte I, Woodborne S (2006) The potential of the baobab (Adansonia digitata L.) as a proxy climate archive. Appl Geochem 21:1674–1680

    Article  CAS  Google Scholar 

  • Rodríguez R, Mabres A, Luckman B, Evans M, Masiokas M, Ektvedt TM (2005) “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendrochronologia 22:181–186

    Article  Google Scholar 

  • Rozendaal DMA, Brienen RJW, Soliz-Gamboa CC, Zuidema PA (2010) Tropical tree rings reveal preferential survival of fast-growing juveniles and increased juvenile growth rates over time. New Phytol 185:759–769

    Article  PubMed  Google Scholar 

  • Rozendaal DM, Soliz-Gamboa CC, Zuidema PA (2011) Assessing long-term changes in tropical forest dynamics: a first test using tree-ring analysis. Trees 25:115–124

    Article  Google Scholar 

  • Schinker MG, Hansen N, Spiecker H (2003) High-frequency densitometry-a new method for the rapic evaluation of wood density variations. IAWA J 24:231–240

    Article  Google Scholar 

  • Schollaen K, Heinrich I, Neuwirth B, Krusic PJ, D’Arrigo RD, Karyanto O, Helle G (2013) Multiple tree-ring chronologies (ring width, δ13C and δ18O) reveal dry and rainy season signals of rainfall in Indonesia. Quatern Sci Rev 73:170–181

    Article  Google Scholar 

  • Schöngart J (2008) Growth-Oriented Logging (GOL): A new concept towards sustainable forest management in Central Amazonian varzea floodplains. For Ecol Manage 256:46–58

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461

    Article  PubMed  Google Scholar 

  • Schöngart J, Orthmann B, Hennenberg KJ, Porembski S, Worbes M (2006) Climate-growth relationships of tropical tree species in West Africa and their potential for climate reconstruction. Glob Change Biol 12:1139–1150

    Article  Google Scholar 

  • Schöngart J (2013) Dendroecological studies in tropical forests. Albert-Ludwigs-University Freiburg, Freiburg im Breisgau.

    Google Scholar 

  • Slik JWF, Arroyo-Rodríguez V, Aiba S-I, Alvarez-Loayza P et al (2015) How many tropical forest tree species are there? Proc Natl Acad Sci 112(24):7472–7477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soliz-Gamboa CC, Rozendaal DM, Ceccantini G, Angyalossy V, van der Borg K, Zuidema PA (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27

    Article  Google Scholar 

  • Soliz-Gamboa CC, Sandbrink A, Zuidema PA (2012) Diameter growth of juvenile trees after gap formation in a Bolivian rain forest: responses are strongly species-specific and size-dependent. Biotropica 44:312–320

    Article  Google Scholar 

  • Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press

    Google Scholar 

  • Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282–285

    Article  CAS  PubMed  Google Scholar 

  • Stahle DW (1999) Useful strategies for the development of tropical tree-ring chronologies. Iawa J 20:249–253

    Article  Google Scholar 

  • Stahle DW, Burnette DJ, Villanueva J, Cerano J, Fye FK, Griffin RD, Cleaveland MK, Stahle DK, Edmondson JR, Wolff KP (2012) Tree-ring analysis of ancient baldcypress trees and subfossil wood. Quatern Sci Rev 34:1–15

    Article  Google Scholar 

  • Sternberg L (2009) Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytol 181:553–562

    Article  CAS  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. In: Intergovernmental panel on climate change, working group I contribution to the IPCC fifth assessment report (AR5), Cambridge University Press, New York

    Google Scholar 

  • van der Sleen P (2014) Environmental and physiological drivers of tree growth. A pan-tropical study of stable isotopes in tree rings. Wageningen University, Wageningen, NL

    Google Scholar 

  • van der Sleen P, Soliz-Gamboa C, Helle G, Pons T, Anten N, Zuidema P (2014) Understanding causes of tree growth response to gap formation: ∆13C-values in tree rings reveal a predominant effect of light. Trees 28:439–448

    Article  Google Scholar 

  • van der Sleen P, Groenendijk P, Vlam M, Anten NP, Boom A, Bongers F, Pons TL, Terburg G & Zuidema PA (2014) No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature geoscience 8:24–28.

    Google Scholar 

  • van Schaik CP, Terborgh JW, Wright SJ (1993) The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annu Rev Ecol Syst 24:353–377

    Article  Google Scholar 

  • Vieira S, Trumore SE, Camargo PBD, Selhorst D, Chambers JQ, Higuchi N, Martinelli LA (2005) Slow growth rates of Amazonian trees: consequences for carbon cycling. Proc Natl Acad Sci USA 102:18502–18507

    Google Scholar 

  • Vlam M (2014) Forensic forest ecology. Unraveling the stand history of tropical forests. Wageningen University, Wageningen, NL

    Google Scholar 

  • Vlam M, Baker PJ, Bunyavejchewin S, Zuidema PA (2014a) Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia 174:1449–1461

    Article  PubMed  Google Scholar 

  • Vlam M, Baker PJ, Bunyavejchewin S, Mohren GM, Zuidema PA (2014b) Understanding recruitment failure in tropical tree species: insights from a tree-ring study. For Ecol Manage 312:108–116

    Article  Google Scholar 

  • Wheeler E, Baas P, Rodgers S (2007) Variations in dicot wood anatomy: a global analysis based on the insidewood database. IAWA J 28:229–258

    Article  Google Scholar 

  • Whitmore TC (1998) An introduction to tropical rain forests. Oxford University Press, New York

    Google Scholar 

  • Wils T, Sass-Klaassen U, Eshetu Z, Bräuning A, Gebrekirstos A, Couralet C, Robertson I, Touchan R, Koprowski M, Conway D (2011) Dendrochronology in the dry tropics: the Ethiopian case. Trees 25:345–354

    Article  Google Scholar 

  • Worbes M (1985) Structural and other adaptations to long-term flooding by trees in Central Amazonia. Amazonia 4:459–484

    Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the neotropics. IAWA Bull 10:109–122

    Article  Google Scholar 

  • Worbes M (1995) How to measure growth dynamics in tropical trees—a review. IAWA J 16:337–351

    Article  Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403

    Article  Google Scholar 

  • Worbes M (2002) One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia 20:217–231

    Article  Google Scholar 

  • Worbes M, Junk WJ (1999) How old are tropical trees? The persistence of a myth. IAWA J 20:255–260

    Article  Google Scholar 

  • Worbes M, Klosa D, Lewark S (1995) Density fluctuation in annual rings of tropical timbers from central Amazonian inundation forests. Holz Als Roh-und Werkstoff 53:63–67

    Article  Google Scholar 

  • Worbes M, Staschel R, Roloff A, Junk WJ (2003) Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. For Ecol Manage 173:105–123

    Article  Google Scholar 

  • Xu C, Sano M, Nakatsuka T (2011) Tree ring cellulose δ18O of Fokienia hodginsii in northern Laos: A promising proxy to reconstruct ENSO? J Geophys Res 116:D24109

    Google Scholar 

  • Xu C, Sano M, Yoshimura K, Nakatsuka T (2014) Oxygen isotopes as a valuable tool for measuring annual growth in tropical trees that lack distinct annual rings. Geochem J 48:371–378

    Article  CAS  Google Scholar 

  • Zuidema PA, Brienen RJW, Schöngart J (2012) Tropical forest warming: looking backwards for more insights. Trends Ecol Evol 27:193–194

    Article  PubMed  Google Scholar 

  • Zuidema PA, Baker PJ, Groenendijk P, Schippers P, van der Sleen P, Vlam M, Sterck F (2013) Tropical forests and global change: filling knowledge gaps. Trends Plant Sci 18:413–419

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel J. W. Brienen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brienen, R.J.W., Schöngart, J., Zuidema, P.A. (2016). Tree Rings in the Tropics: Insights into the Ecology and Climate Sensitivity of Tropical Trees. In: Goldstein, G., Santiago, L. (eds) Tropical Tree Physiology. Tree Physiology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27422-5_20

Download citation

Publish with us

Policies and ethics