Skip to main content

Experimental Investigation of a Hybrid Morphing NACA4412 Airfoil Via Time-Resolved PIV Measurements

  • Conference paper
  • First Online:
  • 1605 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 133))

Abstract

Particle image velocimetry (PIV) measurements are conducted at the trailing edge of a piezoelectric actuated airfoil in order to investigate the physical effect on the flow via high-frequency low-amplitude actuation. Furthermore the effects of large-amplitude low frequency actuation modifying the airfoil camber are investigated using aerodynamic force measurements. A statistical analysis reveals the reduction of the Reynolds stress tensor components with increasing actuation frequency up to a frequency of \(60\,\text {Hz}\). The modification of the airfoil camber allows real-time control of the desired lift. The feasibility of the designed hybrid morphing mechanism under aerodynamic loads at a Reynolds number of 218,000 was shown for both the large amplitude and the high frequent actuation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barbarino, S., Pecora, R., Lecce, L., Concilio, A., Ameduri, S., Calvi, E.: A novel SMA-based concept for airfoil structural morphing. J. Mater. Eng. Perform. 18(5), 696–705 (2009)

    Article  Google Scholar 

  2. Baz, A., Chen, T., Ro, J.: Shape control of NITINOL-reinforced composite beams. Compos. Part B: Eng. 31(8), 631–642 (2000)

    Article  Google Scholar 

  3. Bilgen, O., Friswell, M.I., Taqiuddin, M.: Coupled modeling and optimization of piezocomposite wings. In: ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. V002T06A027–V002T06A027. American Society of Mechanical Engineers (2013a)

    Google Scholar 

  4. Bilgen, O., Landman, D., Friswell, M.I.: Low reynolds number behavior of a solid-state piezocomposite variable-camber wing. AIAA Paper 1515, 8–11 (2013b)

    Google Scholar 

  5. Bilgen, O., Friswell, M.I.: Piezoceramic composite actuators for a solid-state variable-camber wing. J. Intell. Mater. Syst. Struct. 25(7), 806–817 (2014)

    Article  Google Scholar 

  6. Chen, Yude, Matalanis, Claude G., Eaton, John K.: High resolution PIV measurements around a model turbine blade trailing edge film-cooling breakout. Exp. Fluids 44(2), 199–209 (2008)

    Article  Google Scholar 

  7. Chinaud, M., Rouchon, J.-F., Duhayon, E., Scheller, J., Cazin, S., Marchal, M., Braza, M.: Trailing-edge dynamics and morphing of a deformable flat plate at high reynolds number by time-resolved PIV. J. Fluids Struct. (2014). ISSN 0889–9746. doi:10.1016/j.jfluidstructs.2014.02.007. http://www.sciencedirect.com/science/article/pii/S0889974614000231

    Google Scholar 

  8. Deri, E., Braza, M., Cid, E., Cazin, S., Michaelis, D., Degouet, C.: Investigation of the three-dimensional turbulent near-wake structure past a flat plate by tomographic PIV at high reynolds number. J. Fluids Struct. (2013). ISSN: 0889–9746. doi:10.1016/j.jfluidstructs.2012.11.005. http://www.sciencedirect.com/science/article/pii/S0889974612002095

    Google Scholar 

  9. Duerig, T.W., Pelton, A.R.: TiNi Shape Memory Alloys. In: Boyer, R.F., Collings, EW. (eds.), Materials properties handbook: titanium alloys (pp. 1035–1048). ASM International (1994)

    Google Scholar 

  10. Green, S.I.: Fluid Vortices: Fluid Mechanics and Its Applications, vol. 30. Springer, (1995)

    Google Scholar 

  11. Hee, K.H.: Designing morphing airfoils for improving the aerodynamic characteristics (2012)

    Google Scholar 

  12. Ikeda, T.O.: Fundamentals of piezoelectricity. Oxford University Press, Oxford (1990)

    Google Scholar 

  13. Lan, C.-C., Fan, C.-H.: An accurate self-sensing method for the control of shape memory alloy actuated flexures. Sens. Actuators A: Phys. 163(1), 323–332 (2010)

    Article  Google Scholar 

  14. Manzo, J.E.: Analysis and design of a hyper-elliptical cambered span morphing aircraft wing. Ph.D. thesis, Cornell University (2006)

    Google Scholar 

  15. Munday, D., Jamey, J.: Active control of separation on a wing with oscillating camber. J. Aircr. 39(1), 187–189 (2002)

    Article  Google Scholar 

  16. Ohanian III, O., Hickling, C., Stiltner, B., Karni, E.D., Kochersberger, K.B., Probst, T., Gelhausen, P.A., Blain, A.P.: Piezoelectric morphing versus servo-actuated mav control surfaces. AIAA Paper 1512, 23–26 (2012)

    Google Scholar 

  17. Orazi, M.: Lasagna, Davide, Iuso, Gaetano: Circular cylinder drag reduction using piezoelectric actuators. Adv. Aircr. Spacecraft Sci. 1(1), 27–41 (2013)

    Article  Google Scholar 

  18. Ro, J., Baz, A.: Nitinol-reinforced plates: part i. Thermal characteristics. Compos. Eng. 5(1), 61–75 (1995)

    Article  Google Scholar 

  19. Samimy, M., Lele, S.K.: Motion of particles with inertia in a compressible free shear layer. Phys. Fluids A: Fluid Dyn. (1989–1993), 3(8), 1915–1923 (1991)

    Google Scholar 

  20. Scheller, J., Chinaud, M., Rouchon, J.-F., Duhayon, E. Cazin, S., Marchal, M., Braza, M.: Trailing-edge dynamics of a morphing NACA0012 aileron at high reynolds number by high-speed PIV. J. Fluids Struct. (2015). ISSN: 0889–9746. doi:10.1016/j.jfluidstructs.2014.12.012. http://www.sciencedirect.com/science/article/pii/S0889974615000158

    Google Scholar 

  21. Ursache, N., Melin, T., Isikveren, A., Friswell, M.: Morphing winglets for aircraft multi-phase improvement. In: 7th AIAA ATIO Conference, 2nd CEIAT International Conference on Innovation & Integr in Aero Sciences, 17th LTA Systems Tech Conf; followed by 2nd TEOS Forum, Aviation Technology, Integration, and Operations (ATIO) Conferences. American Institute of Aeronautics and Astronautics, (September 2007). http://dx.doi.org/10.2514/6.2007-7813

  22. Wilkie, W., High, J., Bockman, J.: Reliability testing of nasa piezocomposite actuators (2002)

    Google Scholar 

  23. Williams, R.B., Park, G., Inman, D.J., Wilkie, W.K.: An overview of composite actuators with piezoceramic fibers. In: Proceeding of IMAC XX, pp. 4–7 (2002)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank D. Harribey from laplace as well as C. Korbuly from imft for their help and support in realizing the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Scheller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Scheller, J. et al. (2016). Experimental Investigation of a Hybrid Morphing NACA4412 Airfoil Via Time-Resolved PIV Measurements. In: Braza, M., Bottaro, A., Thompson, M. (eds) Advances in Fluid-Structure Interaction. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-319-27386-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27386-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27384-6

  • Online ISBN: 978-3-319-27386-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics