Skip to main content

Microtubule Gel

  • Chapter
  • First Online:
Hydrogels of Cytoskeletal Proteins

Abstract

MT gel is obtained by simply cross-linking MTs [1]. This design is to utilize the intrinsic unique nature of MTs in a form of hydrogel. Protocols to prepare the MT gels are also harnessing the unique property of MT polymerization and depolymerization. Expecting that this introduction help readers to prepare customized MT gels with modifications in the method, the protocols will be introduced from basics. Here, we describe about tubulin purification, the cross-linking of polymerized MTs for gelation, and fluorescent label modification of tubulin for visualization by microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sano, K., Kawamura, R., Tominaga, T., Nakagawa, H., Oda, N., Ijiro, K., Osada, Y.: Thermoresponsive microtubule hydrogel with high hierarchical structure. Biomacromolecules 12, 1409–1413 (2011). doi:10.1021/bm101578x

    Article  Google Scholar 

  2. Weisenberg, R.C., Timasheffl, S.N.: Aggregation of microtubule subunit protein. Effects of divalent cations, colchicine and vinblastine. Biochemistry 9, 4110–4116 (1970)

    Article  Google Scholar 

  3. Shelanski, M., Gaskin, F., Cantor, C.R.: Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. U. S. A. 70, 765–768 (1973)

    Article  Google Scholar 

  4. Borisy, G.G., Marcum, J.M., Olmsted, J.B., Murphy, D.B., Johnson, K.A.: Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro. Ann. N. Y. Acad. Sci. 253, 107–132 (1975)

    Article  Google Scholar 

  5. Castoldi, M., Popov, A.V.: Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 (2003)

    Article  Google Scholar 

  6. Drechsel, D.N., Hyman, A.A., Cobb, M.H., Kirschner, M.W.: Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3, 1141–1154 (1992)

    Article  Google Scholar 

  7. Szasz, J., Yaffe, M.B., Elzinga, M., Blank, G.S., Sternlicht, H.: Microtubule assembly is dependent on a cluster of basic residues in alpha-tubulin. Biochemistry 25, 4572–4582 (1986)

    Article  Google Scholar 

  8. Rees, D.A.: Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Adv. Carbohydr. Chem. Biochem. 24, 267–332 (1969)

    Article  Google Scholar 

  9. Petka, W.A., Harden, J.L., McGrath, K.P., Wirtz, D., Tirrell, D.A.: Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998)

    Article  Google Scholar 

  10. Yoshida, R., Uchida, K., Kaneko, Y., Sakai, K., Kikuchi, A., Sakurai, Y., Okano, T.: Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 374, 240–242 (1995)

    Article  Google Scholar 

  11. Jeong, B., Kim, S.W., Bae, Y.H.: Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev. 54, 37–51 (2002)

    Article  Google Scholar 

  12. Garbern, J.C., Hoffman, A.S., Stayton, P.S.: Injectable pH- and Temperature-Responsive Poly(N-isopropylacrylamide-co-propylacrylic acid) Copolymers for Delivery of Angiogenic Growth Factors. Biomacromolecules 11, 1833–1839 (2010)

    Article  Google Scholar 

  13. Pampaloni, F., Lattanzi, G., Jonas, A., Surrey, T., Frey, E., Florin, E.L.: Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc. Natl. Acad. Sci. U. S. A. 103, 10248–10253 (2006)

    Article  Google Scholar 

  14. Rosales, A.M., Murnen, H.K., Kline, S.R., Zuckermann, R.N., Segalman, R.A.: Determination of the persistence length of helical and non-helical polypeptoids in solution. Soft Matter 8, 3673–3680 (2012)

    Article  Google Scholar 

  15. Yang, Y.L., Lin, J., Kaytanli, B., Saleh, O.A., Valentine, M.T.: Direct correlation between creep compliance and deformation in entangled and sparsely crosslinked microtubule networks. Soft Matter 8, 1776–1784 (2012)

    Article  Google Scholar 

  16. Hyman, A., Drechsel, D., Kellogg, D., Salser, S., Sawin, K., Steffen, P., Wordeman, L., Mitchison, T.: Preparation of modified tubulins. Methods Enzymol. 196, 478–485 (1991)

    Article  Google Scholar 

  17. Peloquin, J., Komarova, Y., Borisy, G.: Conjugation of fluorophores to tubulin. Nat. Methods 2, 299–303 (2005)

    Article  Google Scholar 

  18. Hitt, A.L., Cross, A.R., Williams, R.C.: Microtubule solutions display nematic liquid crystalline structure. J. Biol. Chem. 265, 1639–1647 (1990)

    Google Scholar 

  19. Janmey, P.A., Euteneuer, U., Traub, P., Schliwa, M.: Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell Biol. 113, 155–160 (1991)

    Article  Google Scholar 

  20. Lin, Y.C., Koenderink, G.H., MacKintosh, F.C., Weitz, D.A.: Viscoelastic properties of microtubule networks. Macromolecules 40, 7714–7720 (2007)

    Article  Google Scholar 

  21. Lieleg, O., Claessens, M., Bausch, A.R.: Structure and dynamics of cross-linked actin networks. Soft Matter 6, 218–225 (2010)

    Article  Google Scholar 

  22. Symmons, M.F., Martin, S.R., Bayley, P.M.: Dynamic properties of nucleated microtubules: GTP utilisation in the subcritical concentration regime. J. Cell Sci. 109, 2755–2766 (1996)

    Google Scholar 

  23. Oosawa, F., Kasai, M.: A theory of linear and helical aggregations of macromolecules. J. Mol. Biol. 4, 10–21 (1962)

    Article  Google Scholar 

  24. Fygenson, D.K., Braun, E., Libchaber, A.: Phase diagram of microtubules. Phys. Rev. E 50, 1579–1588 (1994)

    Article  Google Scholar 

  25. Gaskin, F., Cantor, C.R.: Turbidmetric studies of the in vitro assembly and disassembly of porcine neurotubules. J. Mol. Biol. 89, 737–758 (1974)

    Article  Google Scholar 

  26. Howard, J., Hyman, A.A.: Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003)

    Article  Google Scholar 

  27. Vale, R.D., Reese, T.S., Sheetz, M.P.: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985)

    Article  Google Scholar 

  28. Kuznetsov, S.A., Gelfand, V.I.: Bovine brain kinesin is a microtubule-activated ATPase. Proc. Natl. Acad. Sci. U. S. A. 83, 8530–8534 (1986)

    Article  Google Scholar 

  29. Hackney, D.D.: Isolation of kinesin using initial batch ion-exchange. Methods Enzymol. 196, 175–181 (1991)

    Article  Google Scholar 

  30. Svoboda, K., Block, S.M.: Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)

    Article  Google Scholar 

  31. Kojima, H., Muto, E., Higuchi, H., Yanagida, T.: Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997)

    Article  Google Scholar 

  32. Case, R.B., Pierce, D.W., HomBooher, N., Hart, C.L., Vale, R.D.: The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 (1997)

    Article  Google Scholar 

  33. Kawamura, R., Kakugo, A., Shikinaka, K., Osada, Y., Gong, J.P.: Ring-shaped assembly of microtubules shows preferential counterclockwise motion. Biomacromolecules 9, 2277–2282 (2008)

    Article  Google Scholar 

  34. Gittes, F., Mickey, B., Nettleton, J., Howard, J.: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993)

    Article  Google Scholar 

  35. Kawamura, R., Kakugo, A., Osada, Y., Gong, J.P.: Selective formation of a linear-shaped bundle of microtubules. Langmuir 26, 533–537 (2010)

    Article  Google Scholar 

  36. Kawamura, R., Kakugo, A., Osada, Y., Gong, J.P.: Microtubule bundle formation driven by ATP: the effect of concentrations of kinesin, streptavidin and microtubules. Nanotechnology 21, 145603 (2010)

    Article  Google Scholar 

  37. Yoshida, R., Murase, Y.: Self-oscillating surface of gel for autonomous mass transport. Colloids Surf. B Biointerfaces 99, 60–66 (2012)

    Article  Google Scholar 

  38. Thorn, K.S., Ubersax, J.A., Vale, R.D.: Engineering the processive run length of the kinesin motor. J. Cell Biol. 151, 1093–1100 (2000)

    Article  Google Scholar 

  39. Howard, J.: Molecular mechanics of cells and tissues. Cell. Mol. Bioeng. 1, 24–32 (2008)

    Article  Google Scholar 

  40. Howard, J., Hudspeth, A.J., Vale, R.D.: Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989)

    Article  Google Scholar 

  41. Sano, K.I., Kawamura, R., Tominaga, T., Nakagawa, H., Oda, N., Ijiro, K., Osada, Y.: Thermoresponsive microtubule hydrogel with high hierarchical structure. Biomacromolecules 12, 1409–1413 (2011)

    Article  Google Scholar 

  42. Riedel-Kruse, I.H., Hilfinger, A., Howard, J., Julicher, F.: How molecular motors shape the flagellar beat. HFSP J. 1, 192–208 (2007)

    Article  Google Scholar 

  43. Camalet, S., Julicher, F., Prost, J.: Self-organized beating and swimming of internally driven filaments. Phys. Rev. Lett. 82, 1590–1593 (1999)

    Article  Google Scholar 

  44. Vogel, S.K., Pavin, N., Maghelli, N., Julicher, F., Tolic-Norrelykke, I.M.: Self-organization of dynein motors generates meiotic nuclear oscillations. PLoS Biol. 7, 918–928 (2009)

    Article  Google Scholar 

  45. Sanchez, T., Welch, D., Nicastro, D., Dogic, Z.: Cilia-like beating of active microtubule bundles. Science 333, 456–459 (2011)

    Article  Google Scholar 

  46. Okeyoshi, K., Kawamura, R., Yoshida, R., Osada, Y.: Thermo- and photo-enhanced microtubule formation from Ru(bpy)(3)(2+)-conjugated tubulin. J. Mater. Chem. B 2, 41–45 (2014)

    Article  Google Scholar 

  47. Okeyoshi, K., Kawamura, R., Yoshida, R., Osada, Y.: Effect of microtubule polymerization on photoinduced hydrogen generation. Chem. Commun. (Camb.) 51, 11607 (2015)

    Article  Google Scholar 

  48. Liu, Y.F., Guo, Y.X., Valles, J.M., Tang, J.X.: Microtubule bundling and nested buckling drive stripe formation in polymerizing tubulin solutions. Proc. Natl. Acad. Sci. U. S. A. 103, 10654–10659 (2006)

    Article  Google Scholar 

  49. Guo, Y.X., Liu, Y.F., Oldenbourg, R., Tang, J.X., Valles, J.M.: Effects of osmotic force and torque on microtubule bundling and pattern formation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 041910 (2008)

    Article  Google Scholar 

  50. Okeyoshi, K., Kawamura, R., Yoshida, R., Osada, Y.: Microtubule teardrop patterns. Sci. Rep. 5, 9581 (2015)

    Article  Google Scholar 

  51. Fenn, W.O.: A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J. Physiol. 28, 175–203 (1923)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osada, Y., Kawamura, R., Sano, KI. (2016). Microtubule Gel. In: Hydrogels of Cytoskeletal Proteins. Springer, Cham. https://doi.org/10.1007/978-3-319-27377-8_4

Download citation

Publish with us

Policies and ethics