Skip to main content

Actin Gel

  • Chapter
  • First Online:
Book cover Hydrogels of Cytoskeletal Proteins

Abstract

The actin gel can be obtained by simply cross-linking actins by PEG [1]. This is designed to utilize the polymerization nature of actins in a form of hydrogel [1]. The protocol to prepare the actin gel is described here; we hope that this protocol can help readers to prepare another actin gels with modification. Here, we describe the following steps: preparation of acetone powder of striated muscle, extraction of actin from acetone powder, and gelation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sano, K., Kawamura, R., Tominaga, T., Oda, N., Ijiro, K., Osada, Y.: Self-repairing filamentous actin hydrogel with hierarchical structure. Biomacromolecules 12, 4173–4177 (2011). doi:10.1021/bm2009922

    Article  Google Scholar 

  2. Pardee, J.D., Spudich, J.A.: Purification of muscle actin. Methods Enzymol. 85, 164–181 (1982)

    Article  Google Scholar 

  3. Banga, I., Szent-Gyorgi, A.: Studies from the Inst. Med. Chem., Univ. Szeged 1, 5 (1941)

    Google Scholar 

  4. Straub, F.B.: Studies from the Inst. Med. Chem., Univ. Szeged 2, 3 (1942)

    Google Scholar 

  5. Straub, F.B.: Studies from the Inst. Med. Chem., Univ. Szeged 3, 23 (1943)

    Google Scholar 

  6. Spudich, J.A., Watt, S.: The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971)

    Google Scholar 

  7. Suzuki, N., Mihashi, K.: Binding mode of cytochalasin B to F-actin is altered by lateral binding of regulatory proteins. J. Biochem. 109, 19–23 (1991)

    Google Scholar 

  8. Kouyama, T., Mihashi, K.: Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur. J. Biochem. 114, 33–38 (1981)

    Article  Google Scholar 

  9. Sano, K., Kawamura, R., Tominaga, T., Nakagawa, H., Oda, N., Ijiro, K., Osada, Y.: Thermoresponsive microtubule hydrogel with high hierarchical structure. Biomacromolecules 12, 1409–1413 (2011). doi:10.1021/bm101578x

    Article  Google Scholar 

  10. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York, NY (2002)

    Google Scholar 

  11. Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)

    Article  Google Scholar 

  12. Prochniewicz, E., Janson, N., Thomas, D.D., De la Cruz, E.M.: Cofilin increases the torsional flexibility and dynamics of actin filaments. J. Mol. Biol. 353, 990–1000 (2005)

    Article  Google Scholar 

  13. Estes, J.E., Selden, L.A., Gershman, L.C.: Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry 20, 708–712 (1981)

    Article  Google Scholar 

  14. Guice, K.B., Marrou, S.R., Gondi, S.R., Sumerlin, B.S., Loo, Y.-L.: pH response of model diblock and triblock copolymer network containing polystyrene and poly(2-hydroxyethyl methacrylate-co-2-(dimethylamino)ethyl methacrylate). Macromolecules 41, 4390–4397 (2008)

    Article  Google Scholar 

  15. Li, H., Lai, F.: Multiphysics modeling of responsive characteristics of ionic-strength-sensitive hydrogel. Biomed. Microdevices 12, 419–434 (2010)

    Article  Google Scholar 

  16. Yoshida, R., Takahashi, T., Yamaguchi, T., Ichijo, H.: Self-oscillating gel. J. Am. Chem. Soc. 118, 5134–5135 (1996)

    Article  Google Scholar 

  17. Carlier, M.F., Melki, R., Pantaloni, D., Hill, T.L., Chen, Y.: Synchronous oscillations in microtubule polymerization. Proc. Natl. Acad. Sci. U. S. A. 84, 5257–5261 (1987)

    Article  Google Scholar 

  18. Kueh, H.Y., Brieher, W.M., Mitchison, T.J.: Dynamic stabilization of actin filaments. Proc. Natl. Acad. Sci. U. S. A. 105, 16531–16536 (2008)

    Article  Google Scholar 

  19. Kueh, H.Y., Mitchison, T.J.: Structural plasticity in actin and tubulin polymer dynamics. Science 325, 960–963 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osada, Y., Kawamura, R., Sano, KI. (2016). Actin Gel. In: Hydrogels of Cytoskeletal Proteins. Springer, Cham. https://doi.org/10.1007/978-3-319-27377-8_3

Download citation

Publish with us

Policies and ethics