Skip to main content

Abeloid Varieties

  • Chapter
  • First Online:
  • 1740 Accesses

Abstract

Every connected compact complex Lie group of dimension \(g\) can be presented as a quotient \(\mathbb{C}^{g}/\varLambda\) of the affine vector group \(\mathbb{C}^{g}\) by a lattice \(\varLambda\) of rank \(2g\). From the multiplicative point of view, it can be presented as a quotient \(\mathbb{G}_{m,\mathbb{C}}^{g} /M\) of the affine torus \(\mathbb{G}_{m,\mathbb{C}}^{g}\) by a multiplicative lattice \(M\) of rank \(g\). In the rigid analytic case the situation is more complicated because of the phenomena of good and multiplicative reduction, which in general occur in a twisted form. For example look at the rigid analytic uniformization of abelian varieties of Theorem 5.6.5.

The fundamental example of a proper rigid analytic group \(A_{K}\) is the analytic quotient \(A_{K} = E_{K} / M_{K}\) in Raynaud representation; cf. Definition 6.1.5, where \(E_{K}\) is an extension of a proper rigid analytic group \(B_{K}\) with good reduction by an affine torus \(T_{K}\), where \(M_{K}\) is a lattice in \(E_{K}\) of rank equal to \(\dim T_{K}\); cf. Proposition 6.1.4. The main result of this chapter is that every smooth rigid analytic group, which is proper and connected, is of the form \(E_{K} / M_{K}\) after a suitable extension of the base field. This is a generalization of Grothendieck’s Stable Reduction Theorem (Grothendieck in Groupes de Monodromie en Géométrie Algébrique, vols. 288, 340, Springer, Berlin/Heidelberg/New York, 1972; I, Exp. IX, 3.5) as well as of the rigid analytic uniformization of abelian varieties.

The proof requires advanced techniques; it mainly relies on the stable reduction theorem for smooth curve fibrations which are not necessarily proper. In Sect. 7.5 we compactify such a curve fibration by using the Relative Reduced Fiber Theorem 3.4.8 and approximation techniques provided in Sect. 3.6. Then we can apply the moduli space of marked stable curves. Therefore, one can cover the given group \(A_{K}\) by a finite family of smooth curve fibrations with semi-stable reduction.

In a second step one deduces from such a covering the largest open subgroup \(\overline{A}_{K}\) which admits a smooth formal \(R\)-model \(\overline{A}\) by well-known techniques on group generation dating back to A. Weil; cf. Sect. 7.2. The formal group \(\overline{A}\) is a formal torus extension of a formal abelian \(R\)-scheme \(B\). The prolongation of the embedding \(\overline{T}\hookrightarrow\overline{A}\) of the formal torus to a group homomorphism \(T_{K}\to A_{K}\) of the associated affine torus \(T_{K}\) follows by the approximation theorem and a discussion on the convergence of group homomorphisms; cf. Sect. 7.3.

Thus, the group homomorphism \(\overline{A}_{K}\to A_{K}\) extends to a group homomorphism from the push-out \(\widehat{A}_{K}:=T_{K}\amalg_{\overline {T}}\overline {A}\) to \(A_{K}\). The surjectivity of the map \(\widehat{A}_{K}\to A_{K}\) is shown by an analysis of the map from the curve fibration to \(A_{K}\). In fact, the whole torus part is induced by the double points in the reduction of the stable curve fibration; cf. Sect. 7.4.

So far we are concerned only with the case, where the base field is algebraically closed. But it is not difficult to see that the whole approach can be done after a suitable finite separable field extension if one starts with a non-Archimedean field which is not algebraically closed.

If the non-Archimedean field in question has a discrete valuation, there is a notion of a formal Néron model. Then our result implies a semi-abelian reduction theorem for such Néron models. As a further application one can deduce that every abeloid variety has a dual; i.e., the Picard functor of translation invariant line bundles on \(A_{K}\) is representable by an abeloid variety.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Springer, Ergeb. 3. Folge, vol. 21. Springer, Berlin/Heidelberg/New York (1990)

    Book  MATH  Google Scholar 

  2. Bosch, S., Schlöter, K.: Néron models in the setting of formal and rigid geometry. Math. Ann. 301, 339–362 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deligne, P.: Le Lemme de Gabber. Astérisque 127(5), 131–150 (1985)

    MathSciNet  Google Scholar 

  4. Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publ. Math. IHES 36, 75–109 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demazure, M., Gabriel, P.: Groupes algébriques. Tome I. Masson, Paris (1970). North-Holland, Amsterdam

    MATH  Google Scholar 

  6. Grauert, H., Remmert, R.: Coherent Analytic Sheaves. Grundlehren, vol. 265. Springer, Berlin/Heidelberg/New York (1984)

    MATH  Google Scholar 

  7. Grothendieck, A., Dieudonné, J.: Eléments de Géométrie Algébrique. Publ. Math. IHES 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967)

    Google Scholar 

  8. Grothendieck, A., et al.: Séminaire de Géométrie Algébrique 1. In: Revêtements Etales et Groupe Fondamental. Lecture Notes in Mathematics, vol. 224. Springer, Berlin/Heidelberg/New York (1971). New edition: Société Mathématique de France

    Google Scholar 

  9. Grothendieck, A., et al.: Séminaire de Géométrie Algébrique 7. In: Groupes de Monodromie en Géométrie Algébrique. Lecture Notes in Mathematics, vols. 288, 340. Springer, Berlin/Heidelberg/New York (1972)

    Google Scholar 

  10. Hartl, U.: Semi-stable models for rigid-analytic spaces. Manuscr. Math. 110, 365–380 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hartl, U., Lütkebohmert, W.: On rigid-analytic Picard varieties for rigid-analytic spaces. J. Reine Angew. Math. 528, 101–148 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Kiehl, R.: Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie. Invent. Math. 2, 191–214 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kiehl, R.: Analytische Familien affinoider Algebren. In: Heidelberger Sitzungsberichte math. nat. Kl, pp. 25–49 (1968)

    Google Scholar 

  14. Knudsen, F.F.: The projectivity of the moduli space of stable curves. II & III. Math. Scand. 52, 161–212 (1983)

    MathSciNet  MATH  Google Scholar 

  15. Knudsen, F.F., Mumford, D.: The projectivity of the moduli space of stable curves. I. Math. Scand. 39, 19–55 (1976)

    MathSciNet  MATH  Google Scholar 

  16. Mumford, D.: Abelian Varieties. Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Oxford University Press, London (1970). Published for the Tata Institute of Fundamental Research, Bombay

    MATH  Google Scholar 

  17. Mumford, D.: Stability of projective varieties. Enseign. Math. 23, 39–110 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Raynaud, M.: Anneaux Locaux Henséliens. Lecture Notes in Mathematics, vol. 169. Springer, Berlin/Heidelberg/New York (1970)

    MATH  Google Scholar 

  19. Serre, J.-P.: Algèbre locale et Multiplicités. Lecture Notes in Mathematics, vol. 11. Springer, Berlin/Heidelberg/New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lütkebohmert, W. (2016). Abeloid Varieties. In: Rigid Geometry of Curves and Their Jacobians. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-27371-6_7

Download citation

Publish with us

Policies and ethics