Skip to main content

Assessment of Bile Duct Tumors: Endoscopic vs Radiographic

  • Chapter
  • First Online:
Difficult Decisions in Hepatobiliary and Pancreatic Surgery

Abstract

Cholangiocarcinoma (CCA) is the second most common primary liver tumor and it’s associated with a poor prognosis. They diagnosis of CCA can be challenging because of its paucicellular nature, anatomic location, and silent clinical character. Cross sectional radiologic studies (MRI/MRCP and multidetector CT scan) are critical for diagnosis and staging CCA but their sensibility is yet improvable and they don’t allow tissue acquisition. ERCP has been for years the modality of choice for evaluating and sampling biliary strictures for malignancy. New endoscopic techniques like EUS and cholangioscopy and advances in imaging technologies and cytology processing have the potential of significantly improve the preoperative diagnostic accuracy of this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan SA, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012;61(12):1657–69.

    Article  CAS  PubMed  Google Scholar 

  2. Vilgrain V. Staging cholangiocarcinoma by imaging studies. HPB (Oxf). 2008;10(2):106–9.

    Article  CAS  Google Scholar 

  3. Rimola J, et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology. 2009;50(3):791–8.

    Article  PubMed  Google Scholar 

  4. Bridgewater J, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60(6):1268–89.

    Article  PubMed  Google Scholar 

  5. Marrero JA, Ahn J, Rajender Reddy K. ACG clinical guideline: the diagnosis and management of focal liver lesions. Am J Gastroenterol. 2014;109(9):1328–47; quiz 1348.

    Article  PubMed  Google Scholar 

  6. Aljiffry M, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of cholangiocarcinoma: 1990–2009. World J Gastroenterol. 2009;15(34):4240–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee HY, et al. Preoperative assessment of resectability of hepatic hilar cholangiocarcinoma: combined CT and cholangiography with revised criteria. Radiology. 2006;239(1):113–21.

    Article  PubMed  Google Scholar 

  8. Aloia TA, et al. High-resolution computed tomography accurately predicts resectability in hilar cholangiocarcinoma. Am J Surg. 2007;193(6):702–6.

    Article  PubMed  Google Scholar 

  9. Katabathina VS, et al. Adult bile duct strictures: role of MR imaging and MR cholangiopancreatography in characterization. Radiographics. 2014;34(3):565–86.

    Article  PubMed  Google Scholar 

  10. Kim JY, et al. Contrast-enhanced MRI combined with MR cholangiopancreatography for the evaluation of patients with biliary strictures: differentiation of malignant from benign bile duct strictures. J Magn Reson Imaging. 2007;26(2):304–12.

    Article  PubMed  Google Scholar 

  11. Singh A, et al. Diagnostic accuracy of MRCP as compared to ultrasound/CT in patients with obstructive jaundice. J Clin Diagn Res. 2014;8(3):103–7.

    PubMed  PubMed Central  Google Scholar 

  12. Masselli G, Gualdi G. Hilar cholangiocarcinoma: MRI/MRCP in staging and treatment planning. Abdom Imaging. 2008;33(4):444–51.

    Article  PubMed  Google Scholar 

  13. Kim JY, et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol. 2008;103(5):1145–51.

    Article  PubMed  Google Scholar 

  14. Ruys AT, et al. Staging laparoscopy for hilar cholangiocarcinoma: is it still worthwhile? Ann Surg Oncol. 2011;18(9):2647–53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patel AH, et al. The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol. 2000;95(1):204–7.

    Article  CAS  PubMed  Google Scholar 

  16. Fritscher-Ravens A, et al. EUS-guided fine-needle aspiration of suspected hilar cholangiocarcinoma in potentially operable patients with negative brush cytology. Am J Gastroenterol. 2004;99(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  17. De Bellis M, et al. Tissue sampling at ERCP in suspected malignant biliary strictures (part 1). Gastrointest Endosc. 2002;56(4):552–61.

    Article  PubMed  Google Scholar 

  18. Fogel EL, et al. Effectiveness of a new long cytology brush in the evaluation of malignant biliary obstruction: a prospective study. Gastrointest Endosc. 2006;63(1):71–7.

    Article  PubMed  Google Scholar 

  19. Rosch T, et al. ERCP or EUS for tissue diagnosis of biliary strictures? A prospective comparative study. Gastrointest Endosc. 2004;60(3):390–6.

    Article  PubMed  Google Scholar 

  20. de Bellis M, et al. Influence of stricture dilation and repeat brushing on the cancer detection rate of brush cytology in the evaluation of malignant biliary obstruction. Gastrointest Endosc. 2003;58(2):176–82.

    Article  PubMed  Google Scholar 

  21. Brugge WR, et al. Techniques for cytologic sampling of pancreatic and bile duct lesions: the Papanicolaou Society of Cytopathology Guidelines. Cytojournal. 2014;11 Suppl 1:2.

    PubMed  PubMed Central  Google Scholar 

  22. Curcio G, et al. Intraductal aspiration: a promising new tissue-sampling technique for the diagnosis of suspected malignant biliary strictures. Gastrointest Endosc. 2012;75(4):798–804.

    Article  PubMed  Google Scholar 

  23. Baron TH, et al. A prospective comparison of digital image analysis and routine cytology for the identification of malignancy in biliary tract strictures. Clin Gastroenterol Hepatol. 2004;2(3):214–9.

    Article  PubMed  Google Scholar 

  24. Levy MJ, et al. Prospective evaluation of advanced molecular markers and imaging techniques in patients with indeterminate bile duct strictures. Am J Gastroenterol. 2008;103(5):1263–73.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smoczynski M, et al. Routine brush cytology and fluorescence in situ hybridization for assessment of pancreatobiliary strictures. Gastrointest Endosc. 2012;75(1):65–73.

    Article  PubMed  Google Scholar 

  26. Mohamadnejad M, et al. Role of EUS for preoperative evaluation of cholangiocarcinoma: a large single-center experience. Gastrointest Endosc. 2011;73(1):71–8.

    Article  PubMed  Google Scholar 

  27. Ross WA, et al. Combined EUS with FNA and ERCP for the evaluation of patients with obstructive jaundice from presumed pancreatic malignancy. Gastrointest Endosc. 2008;68(3):461–6.

    Article  PubMed  Google Scholar 

  28. Garrow D, et al. Endoscopic ultrasound: a meta-analysis of test performance in suspected biliary obstruction. Clin Gastroenterol Hepatol. 2007;5(5):616–23.

    Article  PubMed  Google Scholar 

  29. Heinzow HS, et al. Comparative analysis of ERCP, IDUS, EUS and CT in predicting malignant bile duct strictures. World J Gastroenterol. 2014;20(30):10495–503.

    Article  PubMed  PubMed Central  Google Scholar 

  30. DeWitt J, et al. EUS-guided FNA of proximal biliary strictures after negative ERCP brush cytology results. Gastrointest Endosc. 2006;64(3):325–33.

    Article  PubMed  Google Scholar 

  31. Byrne MF, et al. Yield of endoscopic ultrasound-guided fine-needle aspiration of bile duct lesions. Endoscopy. 2004;36(8):715–9.

    Article  CAS  PubMed  Google Scholar 

  32. Gleeson FC, et al. EUS-guided FNA of regional lymph nodes in patients with unresectable hilar cholangiocarcinoma. Gastrointest Endosc. 2008;67(3):438–43.

    Article  PubMed  Google Scholar 

  33. Heimbach JK, et al. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB (Oxford). 2011;13(5):356–60.

    Article  Google Scholar 

  34. Micames C, et al. Lower frequency of peritoneal carcinomatosis in patients with pancreatic cancer diagnosed by EUS-guided FNA vs. percutaneous FNA. Gastrointest Endosc. 2003;58(5):690–5.

    Article  PubMed  Google Scholar 

  35. Ikezawa K, et al. Risk of peritoneal carcinomatosis by endoscopic ultrasound-guided fine needle aspiration for pancreatic cancer. J Gastroenterol. 2013;48(8):966–72.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JH, et al. Differential diagnosis of periampullary carcinomas at MR imaging. Radiographics. 2002;22(6):1335–52.

    Article  PubMed  Google Scholar 

  37. Weilert F, et al. EUS-FNA is superior to ERCP-based tissue sampling in suspected malignant biliary obstruction: results of a prospective, single-blind, comparative study. Gastrointest Endosc. 2014;80(1):97–104.

    Article  PubMed  Google Scholar 

  38. Aslanian HR, et al. Endoscopic ultrasound and endoscopic retrograde cholangiopancreatography for obstructing pancreas head masses: combined or separate procedures? J Clin Gastroenterol. 2011;45(8):711–3.

    Article  PubMed  Google Scholar 

  39. Sai JK, et al. Early detection of extrahepatic bile-duct carcinomas in the nonicteric stage by using MRCP followed by EUS. Gastrointest Endosc. 2009;70(1):29–36.

    Article  PubMed  Google Scholar 

  40. Chalasani N, et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology. 2000;31(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  41. Burak K, et al. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol. 2004;99(3):523–6.

    Article  PubMed  Google Scholar 

  42. Chapman MH, et al. Cholangiocarcinoma and dominant strictures in patients with primary sclerosing cholangitis: a 25-year single-centre experience. Eur J Gastroenterol Hepatol. 2012;24(9):1051–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bjornsson E, et al. Dominant strictures in patients with primary sclerosing cholangitis. Am J Gastroenterol. 2004;99(3):502–8.

    Article  PubMed  Google Scholar 

  44. Stiehl A, et al. Development of dominant bile duct stenoses in patients with primary sclerosing cholangitis treated with ursodeoxycholic acid: outcome after endoscopic treatment. J Hepatol. 2002;36(2):151–6.

    Article  PubMed  Google Scholar 

  45. Navaneethan U, et al. Fluorescence in situ hybridization for diagnosis of cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc. 2014;79(6):943–50.e3.

    Article  PubMed  Google Scholar 

  46. Levy C, et al. The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci. 2005;50(9):1734–40.

    Article  CAS  PubMed  Google Scholar 

  47. Sinakos E, et al. Many patients with primary sclerosing cholangitis and increased serum levels of carbohydrate antigen 19-9 do not have cholangiocarcinoma. Clin Gastroenterol Hepatol. 2011;9(5):434–9.e1.

    Article  CAS  PubMed  Google Scholar 

  48. Rey JW, et al. Efficacy of SpyGlass(TM)-directed biopsy compared to brush cytology in obtaining adequate tissue for diagnosis in patients with biliary strictures. World J Gastrointest Endosc. 2014;6(4):137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tischendorf JJ, et al. Cholangioscopic characterization of dominant bile duct stenoses in patients with primary sclerosing cholangitis. Endoscopy. 2006;38(7):665–9.

    Article  CAS  PubMed  Google Scholar 

  50. EASL. Clinical practice guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51(2):237–67.

    Article  Google Scholar 

  51. Keane MG, Marlow NJ, Pereira SP. Novel endoscopic approaches in the diagnosis and management of biliary strictures. F1000Prime Rep. 2013;5:38.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Osanai M, et al. Peroral video cholangioscopy to evaluate indeterminate bile duct lesions and preoperative mucosal cancerous extension: a prospective multicenter study. Endoscopy. 2013;45(8):635–42.

    Article  CAS  PubMed  Google Scholar 

  53. Ramchandani M, et al. Role of single-operator peroral cholangioscopy in the diagnosis of indeterminate biliary lesions: a single-center, prospective study. Gastrointest Endosc. 2011;74(3):511–9.

    Article  PubMed  Google Scholar 

  54. Nguyen NQ, Schoeman MN, Ruszkiewicz A. Clinical utility of EUS before cholangioscopy in the evaluation of difficult biliary strictures. Gastrointest Endosc. 2013;78(6):868–74.

    Article  PubMed  Google Scholar 

  55. Menzel J, et al. Preoperative diagnosis of bile duct strictures – comparison of intraductal ultrasonography with conventional endosonography. Scand J Gastroenterol. 2000;35(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  56. Krishna NB, et al. Intraductal US in evaluation of biliary strictures without a mass lesion on CT scan or magnetic resonance imaging: significance of focal wall thickening and extrinsic compression at the stricture site. Gastrointest Endosc. 2007;66(1):90–6.

    Article  PubMed  Google Scholar 

  57. Stavropoulos S, et al. Intraductal ultrasound for the evaluation of patients with biliary strictures and no abdominal mass on computed tomography. Endoscopy. 2005;37(8):715–21.

    Article  CAS  PubMed  Google Scholar 

  58. Heif M, Yen RD, Shah RJ. ERCP with probe-based confocal laser endomicroscopy for the evaluation of dominant biliary stenoses in primary sclerosing cholangitis patients. Dig Dis Sci. 2013;58(7):2068–74.

    Article  CAS  PubMed  Google Scholar 

  59. Gabbert C, et al. Advanced techniques for endoscopic biliary imaging: cholangioscopy, endoscopic ultrasonography, confocal, and beyond. Gastrointest Endosc Clin N Am. 2013;23(3):625–46.

    Article  PubMed  Google Scholar 

  60. Arvanitakis M, et al. Intraductal optical coherence tomography during endoscopic retrograde cholangiopancreatography for investigation of biliary strictures. Endoscopy. 2009;41(8):696–701.

    Article  CAS  PubMed  Google Scholar 

  61. Kirtane TS, Wagh MS. Endoscopic optical coherence tomography (OCT): advances in gastrointestinal imaging. Gastroenterol Res Pract. 2014;2014:376367.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irving Waxman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Waxman, I., Gonzalez-Haba, M. (2016). Assessment of Bile Duct Tumors: Endoscopic vs Radiographic. In: Millis, J., Matthews, J. (eds) Difficult Decisions in Hepatobiliary and Pancreatic Surgery. Difficult Decisions in Surgery: An Evidence-Based Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-27365-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27365-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27363-1

  • Online ISBN: 978-3-319-27365-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics