Skip to main content

Predicting Cardiorespiratory Instability

  • Chapter

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

Identification of patients with overt cardiorespiratory insufficiency or at high risk of impending cardiorespiratory insufficiency is often difficult outside the venue of directly observed patients in highly staffed areas of the hospital, such as the operating room, intensive care unit (ICU) or emergency department. And even in these care locations, identification of cardiorespiratory insufficiency early or predicting its development beforehand is often challenging. The clinical literature has historically prized early recognition of cardiorespiratory insufficiency and its prompt correction as being valuable at minimizing patient morbidity and mortality while simultaneously reducing healthcare costs. Recent data support the statement that integrated monitoring systems that create derived fused parameters of stability or instability using machine learning algorithms, accurately identify cardiorespiratory insufficiency and can predict their occurrence. In this overview, we describe integrated monitoring systems based on established machine learning analysis using various established tools, including artificial neural networks, k-nearest neighbor, support vector machine, random forest classifier and others on routinely acquired non-invasive and invasive hemodynamic measures to identify cardiorespiratory insufficiency and display them in real-time with a high degree of precision.

The implications of these approaches for all healthcare monitoring across the spectrum of in-patient to chronic care is clear, even though the need may appear more pressing for the acute care setting to those of us whose daily life is centered there. The underlying assumption of these approaches is that measured changes in easily acquired physiologic variables reflect complex patient-specific interactions amongst multiple regulatory autonomic, hormonal and metabolic systems. Accordingly, simple algorithm approaches to such interactions, like the use of the existing severity scoring systems or computer-based treatment protocols, are unlikely to improve outcomes other than by standardizing therapies. Potentially, by using functional hemodynamicmonitoring principles, previously described and validated, we can predict with a high degree of accuracy volume responsiveness and central arterial tone in all patients. But one needs to identify who is unstable or going to be unstable before applying these functional hemodynamic monitoring approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goodrich C (2006) Endpoints of resuscitation: what should we be monitoring? AACN Adv Crit Care 17:306–316

    PubMed  Google Scholar 

  2. Hravnak M, DeVita M, Edwards L, Clontz A, Valenta C, Pinsky MR (2008) Cardiorespiratory instability before and after implementing an integrated monitoring system. Am J Respir Crit Care Med 177:A842 (abst)

    Google Scholar 

  3. Tarassenko L, Hann A, Young D (2006) Integrated monitoring and analysis for early warning of patient deterioration. Br J Anaesth 97:64–68

    Article  CAS  PubMed  Google Scholar 

  4. Hravnak M, Edwards L, Clontz A, Valenta C, DeVita M, Pinsky MR (2008) Defining the incidence of cardio-respiratory instability in step-down unit patients using an electronic integrated monitoring system. Arch Intern Med 168:1300–1308

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hravnak M, Edwards L, Foster-Heasley M et al (2007) Electronic integrated monitoring of medical emergency team calls to a step down unit. Circulation 116(II):939 (abst)

    Google Scholar 

  6. Hravnak M, DeVita MA, Clontz A, Edwards L, Valenta C, Pinsky MR (2011) Cardiorespiratory Instability Before and After Implementing an Integrated Monitoring System. Crit Care Med 39:65–72

    Article  PubMed  PubMed Central  Google Scholar 

  7. Knaus WA, Wagner DP, Draper EA et al (1991) The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100:1619–1636

    Article  CAS  PubMed  Google Scholar 

  8. Zimmerman JE, Kramer AA, McNair DS, Malila FM (2006) Acute Physiology and Chronic Health Evaluation (APACHE) IVL hospital mortality assessment for today’s critically ill patients. Crit Care Med 34:1297–1310

    Article  PubMed  Google Scholar 

  9. Smith GB, Prytherch DR, Schmidt PE et al (2008) Should age be included as a component of track and trigger systems used to identify sick adult patients? Resuscitation 78:109–115

    Article  PubMed  Google Scholar 

  10. Yousef K, Pinsky MR, DeVita MA, Sereika S, Hravnak M (2012) Demographic and clinical predictors of cardiorespiratory instability in a step-down unit: pilot study. Am J Crit Care 21:344–350

    Article  PubMed  PubMed Central  Google Scholar 

  11. Batchinsky AI, Salina J, Kuusela T, Necsoiu C, Jones J, Cancio LC (2009) Rapid prediction of trauma patients survival by analysis of heart rate complexity: impact of reducing data set size. Shock 32:565–571

    Article  PubMed  Google Scholar 

  12. Cancio LC, Batchinsky AI, Salinas J et al (2008) Heart-rate complexity for prediction of prehospital lifesaving interventions in trauma patients. J Trauma 65:813–819

    Article  PubMed  Google Scholar 

  13. Batchinsky AI, Salinas J, Jones JA, Necsoiu C, Cancio LC (2009) Predicting the need to perform life-saving interventions in trauma patients using new vital signs and artificial neural networks. Lecture Notes in Computer Science. Springer, Berlin

    Book  Google Scholar 

  14. Ogundele O, Clermont G, Sileanu F, Pinsky MR (2013) Use of derived physiologic variable to predict individual patients’ probability of hemodynamic instability. Am J Respir Crit Care Med 187:A5067 (abst)

    Google Scholar 

  15. Zenker S, Polanco PM, Kim HK et al (2007) Threshold area over the curve of spectrometric tissue oxygen saturation as an indicator of volume resuscitability in an acute porcine model of hemorrhagic shock. J Trauma 63:573–580

    Article  PubMed  Google Scholar 

  16. Gannon TA, Britt RC, Weireter LJ, Cole FJ, Collins JN, Britt LD (2006) Adrenal insufficiency in the critically III trauma population. Am Surg 72:373–376

    CAS  PubMed  Google Scholar 

  17. Porter MH, Cutchins A, Fine JB, Bai Y, DiGirolamo M (2002) Effects of TNF-alpha on glucose metabolism and lipolysis in adipose tissue and isolated fat-cell preparations. J Lab Clin Med 139:140–146

    Article  CAS  PubMed  Google Scholar 

  18. Helling TS (2005) The liver and hemorrhagic shock. J Am Coll Surg 201:774–783

    Article  PubMed  Google Scholar 

  19. Evans DA, Jacobs DO, Wilmore DW (1989) Tumor necrosis factor enhances glucose uptake by peripheral tissues. Am J Physiol 257:R1182–R1189

    CAS  PubMed  Google Scholar 

  20. Chang CG, Van Way CW 3rd, Dhar A, Helling T Jr, Hahn Y (2000) The use of insulin and glucose during resuscitation from hemorrhagic shock increases hepatic ATP. J Surg Res 92:171–176

    Article  CAS  PubMed  Google Scholar 

  21. Carey LC, Curtin R, Sapira JD (1976) Influence of hemorrhage on adrenal secretion, blood glucose and serum insulin in the awake pig. Ann Surg 183:185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588–595

    Article  CAS  PubMed  Google Scholar 

  23. Singer M (2007) Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med 35:441–448

    Article  Google Scholar 

  24. Leverve XM (2007) Mitochondrial function and substrate availability. Crit Care Med 35:S454–S460

    Article  CAS  PubMed  Google Scholar 

  25. Clavijo-Alvarez JA, Sims CA, Soller B, Pinsky MR, Puyana JC (2005) Monitoring skeletal muscle and subcutaneous tissue acid-base status and oxygenation during hemorrhagic shock and resuscitation. Shock 24:270–275

    Article  CAS  PubMed  Google Scholar 

  26. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: A critical analysis of the evidence. Chest 212:2000–2008

    Article  Google Scholar 

  27. Pinsky MR (2007) Hemodynamic evaluation and monitoring in the ICU. Chest 123:2020–2029

    Article  Google Scholar 

  28. Pinsky MR (2009) Functional hemodynamic monitoring: use of derived variable to diagnose and manage the critically ill. Acta Anaesthesiol Scand 53(suppl 119):9–11

    Google Scholar 

  29. Michard F, Chemla D, Richard C et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939

    Article  CAS  PubMed  Google Scholar 

  30. Monnet X, Rienzo M, Osman D et al (2006) Response to leg raising predicts fluid responsiveness in critically ill. Crit Care Med 34:1402–1407

    Article  PubMed  Google Scholar 

  31. Kim HK, Pinsky MR (2008) Effect of tidal volume, sampling duration and cardiac contractility on pulse pressure and stroke volume variation during positive-pressure ventilation. Crit Care Med 36:2858–2862

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pinsky MR (2009) Functional hemodynamic monitoring: A personal perspective. In: Vincent JL (ed) Yearbook of Emergency and Intensive Care Medicine. Springer-Verlag, Berlin, pp 306–310

    Chapter  Google Scholar 

  33. Marquez J, McCurry K, Severyn DA, Pinsky MR (2008) Ability of pulse power, esophageal Doppler and arterial pressure to estimate rapid changes in stroke volume in humans. Crit Care Med 36:3001–3007

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hadian M, Kim HK, Severyn D, Pinsky MR (2010) Cross-comparison of continuous cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care 14:R212

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cannesson M, Besnard C, Durand PG, Bohé J, Jacques D (2005) Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care 9:R562–R568

    Article  PubMed  PubMed Central  Google Scholar 

  36. Benomar B, Quattara A, Estagnasie P, Brusset A, Squara P (2010) Fluid responsiveness predicted by non-invasive bioreactance-based passive leg raise test. Intensive Care Med 36:1875–1881

    Article  PubMed  Google Scholar 

  37. Gomez H, Torres A, Zenker S et al (2008) Use of non-invasive NIRS during vascular occlusion test to assess dynamic tissue O2 saturation response. Intensive Care Med 34:1600–1607

    Article  PubMed  Google Scholar 

  38. Wo CCJ, Shoemaker WC, Appel PL et al (1993) Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med 21:218–223

    Article  CAS  PubMed  Google Scholar 

  39. Holcomb JB, Niles SE, Miller CC, Hinds D, Duke JH, Moore FA (2005) Prehospital physiologic data and lifesaving interventions in trauma patients. Mil Med 170:7–13

    Article  PubMed  Google Scholar 

  40. Holcomb JB, Salinas J, McManus JJ, Miller CC, Cooke WH, Convertino VA (2005) Manual vital signs reliably predict need for life-saving interventions in trauma patients. J Trauma 59:821–829

    Article  PubMed  Google Scholar 

  41. Porter JM, Ivatury RR (1998) In search of the optimal end points of resuscitation in trauma patients: a review. J Trauma 44:908–914

    Article  CAS  PubMed  Google Scholar 

  42. Guyette FX, Suffoletto BP, Castillio JL, Puyana JC (2009) Identification of occult shock using out-of-hospital lactate. Ann Emerg Med 54:S142 (abst)

    Article  Google Scholar 

  43. Castillio JL, Guyette FX, Suffoletto BP, Peitzman AB, Puyana JC (2009) The role of prehospital lactate as a predictor of outcomes in trauma patients. J Trauma 63:S138 (abst)

    Google Scholar 

  44. Guyette F, Gomez H, Suffoletto B et al (2009) Prehospital dynamic tissue O2 saturation response predicts in-hospital mortality in trauma patients. Crit Care Med 37(12 Suppl):A28 (abst)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Pinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pinsky, M.R., Clermont, G., Hravnak, M. (2016). Predicting Cardiorespiratory Instability. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2016. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-27349-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27349-5_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27348-8

  • Online ISBN: 978-3-319-27349-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics