Skip to main content

Mechanical Circulatory Support in the New Era: An Overview

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2016

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2125 Accesses

Abstract

Maximal medical therapy can no longer be seen as a justifiable end-point for refractory circulatory shock, at least in well-resourced health settings. Despite improvements in almost all other areas of cardiac and intensive care medicine, refractory cardiogenic shock, defined as cardiac and circulatory failure resulting in organ hypoperfusion [1], continues to have unacceptably high mortality and morbidity from the resultant multiple organ failure. Whilst primary cardiac pathology remains the leading cause of cardiogenic shock, acute cardiomyopathies secondary to conditions such as sepsis and toxic ingestion are not uncommon [2]. The conventional approach to supporting patients with circulatory shock includes reversal of underlying causes when feasible, mechanical ventilation, pharmacological hemodynamic support with or without intra-aortic balloon counter pulsation, renal replacement and other supportive therapy. Whilst mechanical circulatory support (MCS) has always been an attractive option when conventional approaches fail, technological limitations, suboptimal clinical application of available technology and resource limitations have all conspired against its more widespread use.

Recently, there is increasing application of extracorporeal membrane oxygenation (ECMO) technology to provide MCS in an incremental fashion either as peripheral or central venoarterial (VA)-ECMO or as univentricular or biventricular assist devices [3, 4]. The use of ECMO in cardiopulmonary resuscitation (CPR) is also expanding with experienced centers reporting favorable outcomes [5]. Other minimally invasive percutaneous ventricular assist devices (pVADs) have also been used in acute settings. Similarly, the implantable, durable, rotary blood pump-driven VADs have revolutionized the care of patients with chronic heart failure or those with acute heart failure who initially need to be stabilized on temporary MCS, and in whom cardiac recovery does not occur [6]. Although total artificial hearts have been used only sparsely, it is expected that their use will increase with the increasing heart failure population and rapid improvements in technology that are currently occurring [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beurtheret S, Mordant P, Paoletti X et al (2013) Emergency circulatory support in refractory cardiogenic shock patients in remote institutions: a pilot study (the cardiac-RESCUE program). Eur Heart J 34:112–120

    Article  PubMed  Google Scholar 

  2. Reynolds HR, Hochman JS (2008) Cardiogenic shock: current concepts and improving outcomes. Circulation 117:686–697

    Article  PubMed  Google Scholar 

  3. Shekar K, Mullany DV, Thomson B, Ziegenfuss M, Platts DG, Fraser JF (2014) Extracorporeal life support devices and strategies for management of acute cardiorespiratory failure in adult patients: a comprehensive review. Crit Care 18:219

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abrams D, Combes A, Brodie D (2014) Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. J Am Coll Cardiol 63:2769–2778

    Article  PubMed  Google Scholar 

  5. Stub D, Bernard S, Pellegrino V et al (2015) Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation 86:88–94

    Article  PubMed  Google Scholar 

  6. Pinney SP (2015) Left ventricular assist devices: The adolescence of a disruptive technology. J Card Fail 21:824–834

    Article  PubMed  Google Scholar 

  7. Cohn WE, Timms DL, Frazier OH (2015) Total artificial hearts: past, present, and future. Nat Rev Cardiol 12:609–617

    Article  PubMed  Google Scholar 

  8. Thiele H, Zeymer U, Neumann FJ et al (2012) Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 367:1287–1296

    Article  CAS  PubMed  Google Scholar 

  9. Cove ME, MacLaren G (2010) Clinical review: mechanical circulatory support for cardiogenic shock complicating acute myocardial infarction. Crit Care 14:235

    Article  PubMed  PubMed Central  Google Scholar 

  10. Combes A, Leprince P, Luyt CE et al (2008) Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med 36:1404–1411

    Article  PubMed  Google Scholar 

  11. Extracorporeal Life Support Organization (2015) ECLS Registry Report International Summary. https://www.elso.org/Registry/Statistics/InternationalSummary.aspx. Accessed Nov 2015

    Google Scholar 

  12. ELSO (2013) Guidelines for Adult Cardiac Failure Supplement Version 1.3. https://www.elso.org/Portals/0/IGD/Archive/FileManager/e76ef78eabcusersshyerdocumentselsoguidelinesforadultcardiacfailure1.3.pdf. Accessed Nov 2015

    Google Scholar 

  13. Chen YS, Lin JW, Yu HY et al (2008) Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet 372:554–561

    Article  PubMed  Google Scholar 

  14. Thiagarajan RR (2011) Extracorporeal membrane oxygenation to support cardiopulmonary resuscitation: Useful, but for whom? Crit Care Med 39:190–191

    Article  PubMed  Google Scholar 

  15. Feldman D, Pamboukian SV, Teuteberg JJ et al (2013) The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: Executive summary. J Heart Lung Transplant 32:157–187

    Article  PubMed  Google Scholar 

  16. Combes A, Bacchetta M, Brodie D, Muller T, Pellegrino V (2012) Extracorporeal membrane oxygenation for respiratory failure in adults. Curr Opin Crit Care 18:99–104

    Article  PubMed  Google Scholar 

  17. Aiyagari RM, Rocchini AP, Remenapp RT, Graziano JN (2006) Decompression of the left atrium during extracorporeal membrane oxygenation using a transseptal cannula incorporated into the circuit. Crit Care Med 34:2603–2066

    Article  PubMed  Google Scholar 

  18. Guirgis M, Kumar K, Menkis AH, Freed DH (2010) Minimally invasive left-heart decompression during venoarterial extracorporeal membrane oxygenation: an alternative to a percutaneous approach. Interact Cardiovasc Thorac Surg 10:672–674

    Article  PubMed  Google Scholar 

  19. Vlasselaers D, Desmet M, Desmet L, Meyns B, Dens J (2006) Ventricular unloading with a miniature axial flow pump in combination with extracorporeal membrane oxygenation. Intensive Care Med 32:3293

    Article  Google Scholar 

  20. Aggarwal A, Modi S, Kumar S et al (2013) Use of a single-circuit CentriMag(R) for biventricular support in postpartum cardiomyopathy. Perfusion 28:156–159

    Article  CAS  PubMed  Google Scholar 

  21. Massetti M, Gaudino M, Saplacan V, Farina P (2013) From extracorporeal membrane oxygenation to ventricular assist device oxygenation without sternotomy. J Heart Lung Transplant 32:138–139

    Article  PubMed  Google Scholar 

  22. Arroyo D, Cook S (2011) Percutaneous ventricular assist devices: new deus ex machina? Minim Invasive Surg 2011:604397

    PubMed  PubMed Central  Google Scholar 

  23. Prutkin JM, Strote JA, Stout KK (2008) Percutaneous right ventricular assist device as support for cardiogenic shock due to right ventricular infarction. J Invasive Cardiol 20:E215–216

    PubMed  Google Scholar 

  24. Rajagopal V, Steahr G, Wilmer CI, Raval NY (2010) A novel percutaneous mechanical biventricular bridge to recovery in severe cardiac allograft rejection. J Heart Lung Transplant 29:93–95

    Article  PubMed  Google Scholar 

  25. Garbade J, Bittner HB, Barten MJ, Mohr FW (2011) Current trends in implantable left ventricular assist devices. Cardiol Res Pract 2011:290561

    PubMed  PubMed Central  Google Scholar 

  26. Stewart GC, Givertz MM (2012) Mechanical circulatory support for advanced heart failure: patients and technology in evolution. Circulation 125:1304–1315

    Article  PubMed  Google Scholar 

  27. Drakos SG, Janicki L, Horne BD et al (2010) Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol 105:1030–1035

    Article  PubMed  Google Scholar 

  28. Cowger J, Sundareswaran K, Rogers JG et al (2013) Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score. J Am Coll Cardiol 61:313–321

    Article  CAS  PubMed  Google Scholar 

  29. Teuteberg JJ, Ewald GA, Adamson RM et al (2012) Risk assessment for continuous flow left ventricular assist devices: does the destination therapy risk score work? An analysis of over 1,000 patients. J Am Coll Cardiol 60:44–51

    Article  PubMed  Google Scholar 

  30. Kirklin JK, Naftel DC, Pagani FD et al (2014) Sixth INTERMACS annual report: A 10,000-patient database. J Heart Lung Transplant 33:555–564

    Article  PubMed  Google Scholar 

  31. Rose EA, Gelijns AC, Moskowitz AJ et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345:1435–1443

    Article  CAS  PubMed  Google Scholar 

  32. Slaughter MS, Rogers JG, Milano CA et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251

    Article  CAS  PubMed  Google Scholar 

  33. Bourque K, Gernes DB, Loree HM 2nd (2001) HeartMate III: pump design for a centrifugal LVAD with a magnetically levitated rotor. ASAIO J 47:401–405

    Article  CAS  PubMed  Google Scholar 

  34. Sundareswaran KS, Reichenbach SH, Masterson KB, Butler KC, Farrar DJ (2013) Low bearing wear in explanted HeartMate II left ventricular assist devices after chronic clinical support. ASAIO J 59:41–45

    Article  PubMed  Google Scholar 

  35. Thoratec Corporation. HeartMate II Clinical Outcomes. http://www.thoratec.com/vad-trials-outcomes/clinical-outcomes/hm2-ce-phase1.aspx. Accessed November 2015

  36. Timms D (2011) A review of clinical ventricular assist devices. Med Eng Phys 33:1041–1047

    Article  PubMed  Google Scholar 

  37. Krabatsch T, Potapov E, Stepanenko A et al (2011) Biventricular circulatory support with two miniaturized implantable assist devices. Circulation 124:179–186

    Article  Google Scholar 

  38. Slaughter MS, Sobieski MA, Tamez D et al (2009) HeartWare miniature axial-flow ventricular assist device: design and initial feasibility test. Texas Heart Inst J 36:12–16

    Google Scholar 

  39. Fitzpatrick JR, Frederick JR, Hiesinger W et al (2009) Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg 137:971–977

    Article  PubMed  PubMed Central  Google Scholar 

  40. Milano CA, Simeone AA (2013) Mechanical circulatory support: devices, outcomes and complications. Heart Fail Rev 18:35–53

    Article  PubMed  Google Scholar 

  41. Frazier OH, Cohn WE (2012) Continuous-flow total heart replacement device implanted in a 55-year-old man with end-stage heart failure and severe amyloidosis. Texas Heart Inst J 39:542–546

    CAS  Google Scholar 

  42. Pirk J, Maly J, Szarszoi O et al (2013) Total artificial heart support with two continuous-flow ventricular assist devices in a patient with an infiltrating cardiac sarcoma. ASAIO J 59:178–180

    Article  PubMed  Google Scholar 

  43. Strueber M, Schmitto JD, Kutschka I, Haverich A (2012) Placement of 2 implantable centrifugal pumps to serve as a total artificial heart after cardiectomy. J Thorac Cardiovasc Surg 143:507–509

    Article  PubMed  Google Scholar 

  44. SynCardia Systems Inc. Total Artificial Heart Facts. http://www.syncardia.com/total-facts/total-artificial-heart-facts.html. Accessed November 2015

  45. Abrams DC, Prager K, Blinderman CD, Burkart KM, Brodie D (2014) Ethical dilemmas encountered with the use of extracorporeal membrane oxygenation in adults. Chest 145:876–882

    Article  PubMed  Google Scholar 

  46. Rizzieri AG, Verheijde JL, Rady MY, McGregor JL (2008) Ethical challenges with the left ventricular assist device as a destination therapy. Philos Ethics Humanit Med 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bruce CR (2013) A review of ethical considerations for ventricular assist device placement in older adults. Aging Dis 4:100–112

    PubMed  PubMed Central  Google Scholar 

  48. Kar B, Basra SS, Shah NR, Loyalka P (2012) Percutaneous circulatory support in cardiogenic shock: interventional bridge to recovery. Circulation 125:1809–1817

    Article  PubMed  Google Scholar 

  49. Uriel N, Pak SW, Jorde UP et al (2010) Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol 56:1207–1213

    Article  PubMed  Google Scholar 

  50. Geisen U, Heilmann C, Beyersdorf F et al (2008) Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg 33:679–684

    Article  PubMed  Google Scholar 

  51. Cheng A, Williamitis CA, Slaughter MS (2014) Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility? Ann Cardiothorac Surg 3:573–581

    PubMed  PubMed Central  Google Scholar 

  52. Holman WL, Kirklin JK, Naftel DC et al (2010) Infection after implantation of pulsatile mechanical circulatory support devices. J Thorac Cardiovasc Surg 139:1632–1636

    Article  PubMed  Google Scholar 

  53. Aissaoui N, Morshuis M, Schoenbrodt M et al (2013) Temporary right ventricular mechanical circulatory support for the management of right ventricular failure in critically ill patients. J Thorac Cardiovasc Surg 146:186–191

    Article  PubMed  Google Scholar 

  54. Drakos SG, Janicki L, Horne BD et al (2010) Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol 105:1030–1035

    Article  PubMed  Google Scholar 

  55. Salamonsen RF, Mason DG, Ayre PJ (2011) Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart. Artif Organs 35:E47–E53

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shekar, K., Gregory, S.D., Fraser, J.F. (2016). Mechanical Circulatory Support in the New Era: An Overview. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2016. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-27349-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27349-5_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27348-8

  • Online ISBN: 978-3-319-27349-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics