Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 55))

  • 1350 Accesses

Abstract

Most of the nanometer CMOS photodetectors presented in Chap. 5 have a small bandwidth due to a slow diffusion current. The photodiodes’ bandwidth can be extended to several Giga hertz by applying equalization techniques like introduced in [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. Lee, J. Han, G. Han, S.M. Park, An 8.5-Gb/s fully integrated CMOS optoelectronic receiver using slope-detection adaptive equalizer. IEEE J. Soild-State Circuits 45(12), 2861–2873 (2010)

    Article  Google Scholar 

  2. W.-Z. Chen, S.-H. Huang, A 2.5 Gbps CMOS fully integrated optical receicer with lateral PIN detector, in IEEE 2007 Custom Intergrated Circuits Conference (CICC) (2007), pp. 293–296

    Google Scholar 

  3. C. Gimeno, C. Aldea, S. Celma, F. Aznar, A cost-effective 1.25-Gb/s CMOS receiver for 50-m large-core SI-POF links. IEEE Photonics Technol. Lett. 99 (2012)

    Google Scholar 

  4. M. Atef, R. Swoboda, H. Zimmermann, 1.25 Gbit/s over 50 m step-index plastic optical fiber using a fully integrated optical receiver with an integrated equalizer. J. Lightwave Technol. 30(1), 118–122 (2012)

    Article  ADS  Google Scholar 

  5. M. Atef, H. Zimmermann, Optical Communication over Plastic Optical Fibers: Integrated Optical Receiver Technology (Springer, Berlin, 2013)

    Book  Google Scholar 

  6. C. Hermans, M. Steyaert, Broadband Opto-Electrical Receivers in Standard CMOS (Springer, Netherlands, 2007)

    Google Scholar 

  7. Y. Dong, K.W. Martin, A high-speed fully-integrated POF receiver with large-area photo detectors in 65 nm CMOS. IEEE J. Solid-State Circuits 47(9), 2080–2092 (2012)

    Article  Google Scholar 

  8. M. Atef, D. Abd-elrahman, 2.5 Gbit/s compact transimpedance amplifier using active inductor in 130 nm CMOS technology, in 21st International Conference on Mixed Design of Integrated Circuits & Systems (MIXDES) (2014), pp. 103–107

    Google Scholar 

  9. M.S.F. Tavernier, High-speed optical receivers with integrated photodiode in nanoscale CMOS (Springer, New York, 2011)

    Google Scholar 

  10. M. Kiziroglou, A. Mukherjee, S. Vatti, A. Holmes, C. Papavassiliou, E. Yeatman, Self-assembly of three-dimensional au inductors on silicon. IET Microwaves, Antennas Propag. 4, 1698–1703 (2010)

    Google Scholar 

  11. J.-S. Choi, M.-S. Hwang, D.-K. Jeong, A 0.18 um CMOS 3.5-Gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method. IEEE J. Solid-State Circuits 39(3), 419–425 (2004)

    Article  Google Scholar 

  12. M. Atef, R.Swoboda, H. Zimmermann, 1 Gbit/s transmission over step-index plastic optical fiber using an optical receiver with an integrated equalizer. Opt. Commun. 284(21), 5153–5156 (2011)

    Google Scholar 

  13. J.G. Proakis, Digital Communications, 4th edn. (McGraw-Hill, New York, 2001)

    Google Scholar 

  14. M. Maeng, F. Bien, Y. Hur, H. Kim, 0.18 um CMOS equalization techniques for 10-Gb/s fiber optical communication. IEEE Trans. Microw. Theory Tech. 53(11), 3509–3519 (2005)

    Article  ADS  Google Scholar 

  15. H. Kim, F. Bien, Y. Hur, S. Chandramouli, J. Cha, E.Gebara, J. Laskar, A 0.25-um BiCMOS feed foward equalizer using active delay line for backplane communication, in IEEE International Symposium on Circuits and Systems (ISCAS) (2007), pp. 193–196

    Google Scholar 

  16. D. Hernandez-Garduno, J. Silva-Martinez, A CMOS 1 Gb/s 5-tap fractionally-spaced equalizer. IEEE J. Solid-State Circuits 43(11), 2482–2491 (2008)

    Article  Google Scholar 

  17. H. Wang, J. Lee, A 21-gb/s 87-mw transceiver with ffe/dfe/analog equalizer in 65-nm cmos technology. IEEE J. Solid-State Circuits 45, 909–920 (2010)

    Google Scholar 

  18. J.K. Omura, On the Viterbi decoding algorithm. IEEE Trans. Inf. Theory 15(1), 177–179 (1969)

    Article  MathSciNet  Google Scholar 

  19. G.D. Forney, Convolutional codes II. Maximum-likehood decoding. Inf. Control 25(3), 222–266 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Idris, N. Abdullah, N.A. Hussein, D.M. Ali, Optimization of BER performance in the MIMO-OFDMA system for mobile WiMAX system using different equalization algorithm, in Advanced Computer and Communication Engineering Technology: Proceedings of the 1st International Conference on Communication and Computer Engineering, Chapter 25 (Springer International Publishing, Swizerland, 2015)

    Google Scholar 

  21. T. Wong, T. Lok, Theory of Digital Communications. Lecture Notes (University of Florida, 2004)

    Google Scholar 

  22. S. Benedetto, E. Biglieri, Principles of Digital Transmission with Wireless Applications (Kluwer Acad./Plenum Publ., 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Atef .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Atef, M., Zimmermann, H. (2016). Equalizers. In: Optoelectronic Circuits in Nanometer CMOS Technology. Springer Series in Advanced Microelectronics, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-27338-9_7

Download citation

Publish with us

Policies and ethics