Advertisement

Equalizers

  • Mohamed AtefEmail author
  • Horst Zimmermann
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 55)

Abstract

Most of the nanometer CMOS photodetectors presented in Chap.  5 have a small bandwidth due to a slow diffusion current. The photodiodes’ bandwidth can be extended to several Giga hertz by applying equalization techniques like introduced in [1, 2].

Keywords

Corner Frequency Voltage Gain Differential Pair Decision Feedback Equalizer Nonlinear Equalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Lee, J. Han, G. Han, S.M. Park, An 8.5-Gb/s fully integrated CMOS optoelectronic receiver using slope-detection adaptive equalizer. IEEE J. Soild-State Circuits 45(12), 2861–2873 (2010)CrossRefGoogle Scholar
  2. 2.
    W.-Z. Chen, S.-H. Huang, A 2.5 Gbps CMOS fully integrated optical receicer with lateral PIN detector, in IEEE 2007 Custom Intergrated Circuits Conference (CICC) (2007), pp. 293–296Google Scholar
  3. 3.
    C. Gimeno, C. Aldea, S. Celma, F. Aznar, A cost-effective 1.25-Gb/s CMOS receiver for 50-m large-core SI-POF links. IEEE Photonics Technol. Lett. 99 (2012)Google Scholar
  4. 4.
    M. Atef, R. Swoboda, H. Zimmermann, 1.25 Gbit/s over 50 m step-index plastic optical fiber using a fully integrated optical receiver with an integrated equalizer. J. Lightwave Technol. 30(1), 118–122 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Atef, H. Zimmermann, Optical Communication over Plastic Optical Fibers: Integrated Optical Receiver Technology (Springer, Berlin, 2013)CrossRefGoogle Scholar
  6. 6.
    C. Hermans, M. Steyaert, Broadband Opto-Electrical Receivers in Standard CMOS (Springer, Netherlands, 2007)Google Scholar
  7. 7.
    Y. Dong, K.W. Martin, A high-speed fully-integrated POF receiver with large-area photo detectors in 65 nm CMOS. IEEE J. Solid-State Circuits 47(9), 2080–2092 (2012)CrossRefGoogle Scholar
  8. 8.
    M. Atef, D. Abd-elrahman, 2.5 Gbit/s compact transimpedance amplifier using active inductor in 130 nm CMOS technology, in 21st International Conference on Mixed Design of Integrated Circuits & Systems (MIXDES) (2014), pp. 103–107Google Scholar
  9. 9.
    M.S.F. Tavernier, High-speed optical receivers with integrated photodiode in nanoscale CMOS (Springer, New York, 2011)Google Scholar
  10. 10.
    M. Kiziroglou, A. Mukherjee, S. Vatti, A. Holmes, C. Papavassiliou, E. Yeatman, Self-assembly of three-dimensional au inductors on silicon. IET Microwaves, Antennas Propag. 4, 1698–1703 (2010)Google Scholar
  11. 11.
    J.-S. Choi, M.-S. Hwang, D.-K. Jeong, A 0.18 um CMOS 3.5-Gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method. IEEE J. Solid-State Circuits 39(3), 419–425 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Atef, R.Swoboda, H. Zimmermann, 1 Gbit/s transmission over step-index plastic optical fiber using an optical receiver with an integrated equalizer. Opt. Commun. 284(21), 5153–5156 (2011)Google Scholar
  13. 13.
    J.G. Proakis, Digital Communications, 4th edn. (McGraw-Hill, New York, 2001)Google Scholar
  14. 14.
    M. Maeng, F. Bien, Y. Hur, H. Kim, 0.18 um CMOS equalization techniques for 10-Gb/s fiber optical communication. IEEE Trans. Microw. Theory Tech. 53(11), 3509–3519 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    H. Kim, F. Bien, Y. Hur, S. Chandramouli, J. Cha, E.Gebara, J. Laskar, A 0.25-um BiCMOS feed foward equalizer using active delay line for backplane communication, in IEEE International Symposium on Circuits and Systems (ISCAS) (2007), pp. 193–196Google Scholar
  16. 16.
    D. Hernandez-Garduno, J. Silva-Martinez, A CMOS 1 Gb/s 5-tap fractionally-spaced equalizer. IEEE J. Solid-State Circuits 43(11), 2482–2491 (2008)CrossRefGoogle Scholar
  17. 17.
    H. Wang, J. Lee, A 21-gb/s 87-mw transceiver with ffe/dfe/analog equalizer in 65-nm cmos technology. IEEE J. Solid-State Circuits 45, 909–920 (2010)Google Scholar
  18. 18.
    J.K. Omura, On the Viterbi decoding algorithm. IEEE Trans. Inf. Theory 15(1), 177–179 (1969)MathSciNetCrossRefGoogle Scholar
  19. 19.
    G.D. Forney, Convolutional codes II. Maximum-likehood decoding. Inf. Control 25(3), 222–266 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. Idris, N. Abdullah, N.A. Hussein, D.M. Ali, Optimization of BER performance in the MIMO-OFDMA system for mobile WiMAX system using different equalization algorithm, in Advanced Computer and Communication Engineering Technology: Proceedings of the 1st International Conference on Communication and Computer Engineering, Chapter 25 (Springer International Publishing, Swizerland, 2015)Google Scholar
  21. 21.
    T. Wong, T. Lok, Theory of Digital Communications. Lecture Notes (University of Florida, 2004)Google Scholar
  22. 22.
    S. Benedetto, E. Biglieri, Principles of Digital Transmission with Wireless Applications (Kluwer Acad./Plenum Publ., 1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of EngineeringAssiut UniversityAssiutEgypt
  2. 2.Institute of Electrodynamics, Microwave and Circuit EngineeringTU WienViennaAustria

Personalised recommendations