Transimpedance Amplifiers

  • Mohamed AtefEmail author
  • Horst Zimmermann
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 55)


Current-to-voltage converters are necessary in optical receivers in order to convert and amplify the weak photocurrent delivered by the photodiode into a strong output voltage signal which is proportional to the input current.


Transimpedance photocurrentPhotocurrent bandwidthBandwidth Input Referred Noise Current High Input Optical Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Razavi, Design of Integrated Circuits for Optical Communications (McGraw-Hill, New York, 2003)Google Scholar
  2. 2.
    E. Säckinger, Broadband Circuits for Optical Fiber Communication (Wiley, New Jersey, 2005)CrossRefGoogle Scholar
  3. 3.
    A.-J. Annema, B. Nauta, R.V. Langevelde, H. Tuinhout, Analog circuits in ultra-deep-submicron CMOS. IEEE J. Solid-State Circuits 40(1), 132–143 (2005)CrossRefGoogle Scholar
  4. 4.
    S. Voinigescu et al., Circuits and technologies for highly integrated optical network IC-s at 10 Gb/s to 40 Gb/s, in Custom Integrated Circircuit Conference, pp. 331–338 (2001)Google Scholar
  5. 5.
    P. Muller, Y. Leblebici, CMOS Multichannel Single-Chip Receivers for Multi-Gigabit Optical Data Communications (Springer, Netherlands, 2007)CrossRefGoogle Scholar
  6. 6.
    C. Hermans, M. Steyaert, Broadband Opto-Electrical Receivers in Standard CMOS (Springer, Netherlands, 2007)Google Scholar
  7. 7.
    M. Ingels, M. Steyaert, Integrated CMOS Circuits for Optical Communications (Springer, New York, 2004)CrossRefGoogle Scholar
  8. 8.
    S.M. Park, H. Yoo, 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications. IEEE J. Solid-State Circuits 39(1), 112–121 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Chan, O.T. Chen, Inductor-less 10Gb/s CMOS transimpedance amplifier using source-follower regulated cascode and double three-order active feedback, in Proceedings—IEEE International Symposium on Circuits and Systems pp. 5487–5490 (2006)Google Scholar
  10. 10.
    H. Chen, C. Chen, W. Yang, J. Chiang, Inductorless CMOS receiver front-end circuits for 10-Gb/s optical communications. Tamkang J. Sci. Eng. 12(4), 449–458 (2009)Google Scholar
  11. 11.
    K. Park, W.S. Oh, B. Choi, J. Han, S.M. Park, A 4-Channel 12.5Gb/s common-gate transimpedance amplifier array for DVI/HDMI applications, in Proceedings—IEEE International Symposium on Circuits and Systems pp. 2192–2195 (2007)Google Scholar
  12. 12.
    J. Borremans, P. Wambacq, C. Soens, Y. Rolain, M. Kuijk, Low-area active-feedback low-noise amplifier design in scaled digital CMOS. IEEE J. Solid-State Circuits 43, 2422–2433 (2008)CrossRefGoogle Scholar
  13. 13.
    E. Säckinger, The transimpedance limit. IEEE Trans. Circuits Syst. I(TCAS I) 57, 1848–1856 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Atef, H. Zimmermann, 10Gbit/s 2mW inductorless transimpedance amplifier, IEEE Int. Symp. Circuits Syst. (ISCAS), Seoul, Korea (South), pp. 1728–1731 (2012)Google Scholar
  15. 15.
    H. Zimmermann, Integrated Silicon Optoelectronics, second edn. (Springer, Berlin, 2010)CrossRefGoogle Scholar
  16. 16.
    K. Schneider, H. Zimmermann, Highly sensitive wide-dynamic range optical burst-mode receivers for ultra-fast gain switching. Analog Integr. Circuit Signal Process. 49, 141–149 (2006)CrossRefGoogle Scholar
  17. 17.
    K. Schneider, H. Zimmermann, Highly Sensitive Optical Receivers (Springer, Berlin, 2006)CrossRefGoogle Scholar
  18. 18.
    M. Ingels, G. Van Der Plas, J. Crols, M. Steyaert, A CMOS 18 THz \(\Omega \) 248 Mb/s transimpedance amplifier and 155 Mb/s LED-driver for low cost optical fiber links. IEEE J. Solid-State Circuits 29, 1552–1559 (1994)CrossRefGoogle Scholar
  19. 19.
    M. Atef, F. Aznar, S. Schid, A. Polzer, W. Gaberl, H. Zimmermann, 8 Gbit/s inductorless transimpedance amplifier in 90 nm CMOS technology. Analog Integr. Circuit Signal Process. 79(1), 27–36 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Atef, H. Zimmermann, 2.5 Gbit/s transimpedance amplifier using noise cancelling for optical receivers, in IEEE International Symposium on Circuits Systems (ISCAS), Seoul, Korea (South), pp. 1740–1743 (2012)Google Scholar
  21. 21.
    F. Bruccoleri, E. Klumperink, B. Nauta, Wide-band cmos low-noise amplifier exploiting thermal noise canceling. IEEE J. Solid-State Circuits 39, 275–282 (2004)CrossRefGoogle Scholar
  22. 22.
    D.J.A. Groeneveld, Bandwidth extension and noise cancelling for TIAs, M.Sc. thesis, University of Twente (2010)Google Scholar
  23. 23.
    C. Kromer, G. Sialm, T. Morf, M.L. Schmatz, F. Ellinger, E. Daniel, H. Jackel, A low-power 20-GHz 52-dB transimpedance amplifier in 80 nm CMOS. IEEE J. Solid-State Circuits 39(6), 885–894 (2004)CrossRefGoogle Scholar
  24. 24.
    K. Schneider, H. Zimmermann, A. Wiesbauer, Optical receiver in deep-sub-micrometre CMOS with \(-28.2\) dBm Sensitivity at 1.25 Gbit/s. Electron. Lett. 40(4), 262–263 (2004)CrossRefGoogle Scholar
  25. 25.
    A. Vilches, R. Loga, M. Rahal, K. Fobelets, C. Papavassiliou, T.J. Hall, Monolithic large-signal transimpedance amplifier for use in multi-gigabit, short-range optoelectronic interconnect applications. IEEE Trans. Circuits Syst. II 52(2), 102–106 (2005)CrossRefGoogle Scholar
  26. 26.
    K. Schrödinger, J. Stimma, M. Mauthe, A fully integrated CMOS receiver front-end for optic gigabit ethernet. IEEE J. Solid-State Circuits 37(7), 874–880 (2002)CrossRefGoogle Scholar
  27. 27.
    F. Aznar, W. Gaberl, H. Zimmermann, A highly sensitive 2.5 gb/s transimpedance amplifier in cmos technology, in IEEE International Symposium on Circuits and Systems(ISCAS 2009), Taipei, pp. 189–192 (May 2009)Google Scholar
  28. 28.
    J. Tak, H. Kim, J. Shin, J. Lee, J. Han, S.M. Park, A low-power wideband transimpedance amplifier in 0.13 m CMOS, in IEEE International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals (IMWS-IRFPT), Daejeon, pp. 1–2 (2011)Google Scholar
  29. 29.
    M. Hassan, H. Zimmermann, An 85 dB dynamic range transimpedance amplifier in 40 nm CMOS technology, NORCHIP, pp. 1–4 (2011)Google Scholar
  30. 30.
    F. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H.F. Moghadam, X. Zheng, J.E. Cunningham, A.V. Krishnamoorthy, E. Alon, R. Ho, 10 Gbps, 530 fJ/b optical transceiver circuits in 40 nm CMOS, in Symposium on VLSI Circuits (VLSIC) pp. 290–291 (2011)Google Scholar
  31. 31.
    T. De Ridder, P. Ossieur, X. Yin, B. Baekelandt, C. Melange, J. Bauwelinck, X.Z. Qiu, J. Vandewege, BiCMOS variable gain transimpedance amplifier for automotive applications. Electron. Lett. 44(4), 287–288 (2008)CrossRefGoogle Scholar
  32. 32.
    R. Swoboda, M. Frtsch, H. Zimmermann, 3 Gbps-per-Channel Highly-Parallel Silicon Receiver OEIC, in 33rd European Conference and Ehxibition of Communication (ECOC) pp. 1–2 (2007)Google Scholar
  33. 33.
    D. Micusik, Design of hybrid optical receiver with wide dynamic input range, Ph.D. thesis, Vienna University of Technology, 2008Google Scholar
  34. 34.
    M. Hassan, H. Zimmermann, An 85 dB dynamic range transimpedance amplifier in 40 nm CMOS technology, in NORCHIP, Lund pp. 1–4 (2011)Google Scholar
  35. 35.
    Y. Dong, K.W. Martin, A high-speed fully-integrated POF receiver with large-area photo detectors in 65 nm CMOS. IEEE J. Solid-State Circuits 47(9), 2080–2092 (2012)CrossRefGoogle Scholar
  36. 36.
    S.S. Mohan, M.D.M. Hershenson, S.P. Boyd, T.H. Lee, Bandwidth extension in CMOS with optimized on-cip inductors. IEEE J. Solid-State Circuits 35, 346–355 (2000)CrossRefGoogle Scholar
  37. 37.
    O. Yong-Hun, S.-G. Lee, An inductance enhancement technique and its application to a shunt–peaked 2.5 Gb/s transimpedance amplifier design. IEEE Trans. Circuits Syst. II 51(11), 624–628 (2004)CrossRefGoogle Scholar
  38. 38.
    M. Atef, D. Abd-elrahman, 2.5 Gbit/s compact transimpedance amplifier using active inductor in 130 nm CMOS technology, The 21st International Conference in Mixed Design of Integrated Circuits Systems (MIXDES) pp. 103–107 (June 2014)Google Scholar
  39. 39.
    J.-S. Youn, H.-S. Kang, M.-J. Lee, K.-Y. Park, W.-Y. Choi, High-speed CMOS integrated optical receiver with an avalanche photodetector. IEEE Photonics Technol. Lett. 21(20), 1553–1555 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    S. Galal, B. Razavi, 10-Gb/s limiting amplifier and laser/modulator driver in \(0.18\,\upmu {\rm m}\) CMOS technology. IEEE J. Solid-State Circuits 38(12), 2138–2146 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of EngineeringAssiut UniversityAssiutEgypt
  2. 2.Institute of Electrodynamics, Microwave and Circuit EngineeringTU WienViennaAustria

Personalised recommendations