Advertisement

Optoelectronic Circuits in Nanometer CMOS Technology

  • Mohamed AtefEmail author
  • Horst Zimmermann
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 55)

Abstract

In this chapter three fully integrated optical receivers down to 40 nm CMOS are described. In addition two optical receivers with off-chip photodiode follow. Finally optical sensors are introduced to complete the application spectrum of optoelectronic nanometer CMOS circuits: one two-dimensional (2D) image sensor, two three-dimensional (3D) image sensors and a positron-emission tomography (PET) sensor for medical applications.

Keywords

Image Sensor Optical Receiver CMOS Image Sensor Output Driver Standard CMOS Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Fortsch, Monolithically Integrated Optical Receivers for Low-Cost Data Communication and Optical Storage Systems. Ph.D. Dissertation, Vienna University of Technology (2007)Google Scholar
  2. 2.
    C. Hermans, M. Steyaert, Broadband Opto-Electrical Receivers in Standard CMOS (Springer, Netherlands, 2007)Google Scholar
  3. 3.
    Y. Dong, K.W. Martin, A high-speed fully-integrated POF receiver with large-area photo detectors in 65 nm CMOS. IEEE J. Solid-State Circuits 47(9), 2080–2092 (2012)CrossRefGoogle Scholar
  4. 4.
    Y. Dong, K. Martin, A Monolithic 3.125 gbps Fiber Optic Receiver Front-End for POF Applications in 65 nm CMOS (Sept 2011), pp. 1–4Google Scholar
  5. 5.
    M. Atef, H. Zimmermann, Optical receiver using noise cancelling with an integrated photodiode in 40nm cmos technology. IEEE Trans. Circuits and Systems I (TCAS I) (2013)Google Scholar
  6. 6.
    M. Atef, H. Zimmermann, 2.5 Gbit/s transimpedance amplifier using noise cancelling for optical receivers, in IEEE International Symposium on Circuits and Systems (ISCAS) (Seoul, Korea (South), 2012), pp. 1740–1743Google Scholar
  7. 7.
    F. Tavernier, M. Steyaert, High-speed optical receivers with integrated photodiode in 130 nm cmos. IEEE J. Solid-State Circuits 44, 2856–2867 (2009)CrossRefGoogle Scholar
  8. 8.
    W.-Z. Chen, S.-H. Huang, A 2.5 Gbps CMOS fully integrated optical receicer with lateral PIN detector, in IEEE 2007 Custom Intergrated Circuits Conference (CICC) (2007), pp. 293–296Google Scholar
  9. 9.
    T.-C. Kao, F. Musa, A. Carusone, A 5-gbit/s cmos optical receiver with integrated spatially modulated light detector and equalization. IEEE Trans. Circuits Syst. I: Regul. Pap. 57, 2844–2857 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Rousson, T.C. Carusone, A multi-lane optical receiver with integrated photodiodes in 90 nm standard cmos, in Optical Fiber Communication Conference, p. JTh2A.21 (Optical Society of America, 2012)Google Scholar
  11. 11.
    M. Atef, F. Aznar, S. Schid, A. Polzer, W. Gaberl, H. Zimmermann, 8 Gbit/s inductorless transimpedance amplifier in 90 nm CMOS technology. Analog Integr. Circuits Sig. Proces. 79(1), 27–36 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J.M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, J.M. Fdli, Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt. Express 20(2), 1096–1101 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M. Atef, H. Zimmermann, 10 Gbit/s 2 mW inductorless transimpedance amplifier, in IEEE International Symposium on Circuits and Systems (ISCAS) (Seoul, Korea (South), 2012), pp. 1728–1731Google Scholar
  14. 14.
    M. Atef, H. Zimmermann, Low-power 10 Gb/s inductorless inverter based common-drain active feedback transimpedance amplifier in 40 nm CMOS. Analog Integr. Circuits Sig. Process. 76(3), 367–376 (2013)CrossRefGoogle Scholar
  15. 15.
    O. Momeni, H. Hashemi, E. Afshari, A 10-Gb/s inductorless transimpedance amplifier, in IEEE Transactions on Circuits and Systems II (TCAS II), vol. 57, no. 12 (2010), pp. 926–930Google Scholar
  16. 16.
    F.Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H.F. Moghadam, X. Zheng, J.E. Cunningham, A.V. Krishnamoorthy, E. Alon, R. Ho, 10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS. IEEE J. Solid-State Circuits PP(99), 1 (2012)Google Scholar
  17. 17.
    H. Chen, C. Chen, W. Yang, J. Chiang, Inductorless CMOS receiver front-end circuits for 10-Gb/s optical communications. Tamkang J. Sci. Eng. 12(4), 449–458 (2009)Google Scholar
  18. 18.
    I. Takayangi et al., High-resolution CMOS video image sensors. Proc. IEEE 99, 1–13 (2012)Google Scholar
  19. 19.
    R. Johansson et al., A 1/13-Inch 30 fps VGA SoC CMOS image sensor with shared reset and transfer-gate pixel control, in IEEE International Solid-State Circuits Conference (2011), pp. 414–415Google Scholar
  20. 20.
    J. Moholt et al., A 2Mpixel 1/4 Inch CMOS image sensor with enhanced pixel architecture for camera phones and PC cameras, in IEEE International Solid-State Circuits Conference (2008), pp. 58–59Google Scholar
  21. 21.
    K.B. Cho et al., A 1/2.5 Inch 8.1Mpixel CMOS image sensor for digital cameras, in IEEE International Solid-State Circuits Conference (2007), pp. 508–509Google Scholar
  22. 22.
    M.J. Loinaz et al., A 200-mW, 3.3 V CMOS color camera IC producing 352 \(\times \) 288 24-b video at 30 frames/s. IEEE J. Solid-State Circuits 33(12), 2092–2103 (1998)CrossRefGoogle Scholar
  23. 23.
    J. Deguchi, F. Tachibana, M. Morimoto, M. Chiba, T. Miyaba, H. Tanaka, K. Takenaka, K.A. S. Funayama, K. Sugiura, R. Okamoto, S. Kousai, A 187.5 \(\mu \)V\(_{rms}\)-read-noise 51 mW 1.4 Mpixel CMOS image sensor with PMOSCAP column CDS and 10b self-differential offset-cancelled pipeline SAR-ADC, in IEEE International Solid-State Circuits Conference (2013), pp. 494–495Google Scholar
  24. 24.
    S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, K. Inoue, H. Takahashi, T. Nagano, Y. Nitta, T. Hirayama, N. Fukushima, A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor, in IEEE International Solid-State Circuits Conference (2013), pp. 484–485Google Scholar
  25. 25.
    S. Koyama, K. Onozawa, K. Tanaka, Y. Kato, A 3D Vision 2.1 Mpixel image sensor for single-lens camera systems, in IEEE International Solid-State Circuits Conference (2013), pp. 492–493Google Scholar
  26. 26.
    K. Toshikiyo et al., A MOS image sensor with microlenses built by sub-wavelength patterning, in IEEE International Solid-State Circuits Conference (San Francisco, CA, 2007), pp. 514–515Google Scholar
  27. 27.
    K. Onozawa et al., A MOS image sensor with a digital microlens. IEEE Trans. Electron Devices, 986–991 (2008)Google Scholar
  28. 28.
    M. Davidovic, G. Zach, K. Schneider-Hornstein, H. Zimmermann, Range finding sensor in 90 nm CMOS with bridge correlator based background light suppression, in ESSCIRC (Seville, 2010), pp. 298–301Google Scholar
  29. 29.
    M. Davidovic, G. Zach, K. Schneider-Hornstein, H. Zimmermann, TOF range finding sensor in 90 nm CMOS capable of suppressing 180klx ambient light. in IEEE Sensors Conference (Kona, HI, 2010), pp. 2413–2416Google Scholar
  30. 30.
    L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, R. Walker, An 8\(\times \)16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100 MS/s real-time energy histogramming in 0.13 \(\mu \)m CIS technology for PET/MRI applications, in IEEE International Solid-State Circuits Conference (ISSCC 2013) (San Francisco, USA, 2013), pp. 486–487Google Scholar
  31. 31.
    J. Richardson, L. Grant, R. Henderson, Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology. IEEE Photonics Technol. Lett. 21, 1020–1022 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of EngineeringAssiut UniversityAssiutEgypt
  2. 2.Institute of Electrodynamics, Microwave and Circuit EngineeringTU WienViennaAustria

Personalised recommendations