Advertisement

Why Optoelectronic Circuits in Nanometer CMOS?

  • Mohamed AtefEmail author
  • Horst Zimmermann
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 55)

Abstract

Highly integrated communication systems are required to fulfill the growing demand for higher data rates in telecommunication networks. The optical fiber links are the best candidates to deal with large volumes of data since they provide superior performance compared to conventional electrical links in terms of bandwidth, channel loss, electromagnetic interference, reflection, and crosstalk.

Keywords

Print Circuit Board High Data Rate Bond Wire Optical Receiver Plastic Optical Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    White Paper, Fiber Types in Gigabit Optical Communications (Cisco Systems, 2006), pp. C11–463661-00Google Scholar
  2. 2.
    B. Mukherjee, Optical WDM Networks, Chapter 2 (Springer, New York, 2006)Google Scholar
  3. 3.
    G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley, New York, 2002)Google Scholar
  4. 4.
  5. 5.
    M.S. Filip Tavernier, High-Speed Optical Receivers with Integrated Photodiode in NanoscaleCMOS. (Springer, NewYork, 2011)Google Scholar
  6. 6.
    C. Lin (ed.), Broadband Optical Access Networks and Fiber-to-the-Home Systems Technologies and Deployment Strategies, Chapter 8 (Wiley, Chichester, 2008)Google Scholar
  7. 7.
    ETSI TS 105 175–1 V1.1.1(2010–01), Access, Terminals, Transmission and Multiplexing (ATTM); Plastic Optical Fibre System Specifications for 100 Mbit/s and 1 Gbit/s (2010). http://www.etsi.org/WebSite/homepage.aspx
  8. 8.
  9. 9.
    H.P.A. van den Boom, W. Li, P.K. van Bennekom, I.T. Monroy, G.D. Khoe, High-capacity transmission over polymer optical fiber. IEEE J. Sel. Top. Quantum Electron. 7(3), 461–469 (2001)CrossRefGoogle Scholar
  10. 10.
    P. Polishuk, Plastic optical fibers branch out. IEEE Commun. Mag. 44(9), 140–148 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Atef, H. Zimmermann, Optical Communication over Plastic Optical Fibers: Integrated Optical Receiver Technology (Springer, Berlin, 2013)CrossRefGoogle Scholar
  12. 12.
    R. Gaudino, E. Capello, G. Perrone, G. Perrone, M. Chiaberge, P. Francia, G. Botto, advanced modulation format for high speed transmission over standard SI-POF using DSP/FPGA platforms. in POF Conference 2004, (Nuerberg, 2004), pp. 98–105Google Scholar
  13. 13.
    F. Breyer, S. Lee, S. Randel, N. Hanik, PAM-4 signalling for gigabit transmission over standard step-index plastic optical fibre using light emitting diodes, in 34th European Conference and Exhibition on Optical Communication (ECOC 2008), vol. 3 (Brussels, Belgium, 2008) pp. 81–82Google Scholar
  14. 14.
    S.C.J. Lee, F. Breyer, D. Cardenas, S. Randel, A.M.J. Koonen, Real-time gigabit DMT transmission over plastic optical fibre. Electron. Lett. 45(25), 1342–1343 (2009)CrossRefGoogle Scholar
  15. 15.
    S.C.J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, H.P.A. van den Boom, A.M.J. Koonen, Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibers. J. Lightwave Technol. 27(11), 1503–1513 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J.G. Proakis, M. Salehi, Fundamentals of Communication Systems. (Pearson Prentice Hall, 2005)Google Scholar
  17. 17.
    White Paper, Overcome Copper Limits with Optical Interfaces. (Altera Corporation, 2011) pp. WP-01161-1.1Google Scholar
  18. 18.
    D.A.B. Miller, Device requirements for optical interconnects to silicon chips. Proc. IEEE 97(7), 1166–1185 (2009)CrossRefGoogle Scholar
  19. 19.
    A European Roadmap for Photonics and Nanotechnologies. Published by the MONA consortium (2008)Google Scholar
  20. 20.
    F. Doany, Power-efficient, high-bandwidth optical interconnects for high performance computing. in Hot Interconnects conference, (Santa Clara, 2012)Google Scholar
  21. 21.
    International Technology Roadmap for Semiconductors (ITRS): Interconnect (2011)Google Scholar
  22. 22.
    ZRL I/O Link Technology Group, ZRL Photonics Group, Optical Interconnects: Intra-system Data Transfer with Light. Foil-set for Internet-download and General Media Usage, (IBM, Zurich, 2005)Google Scholar
  23. 23.
    M. Fortsch, Monolithically Integrated Optical Receivers for Low-Cost Data Communication and Optical Storage Systems. Ph.D. Dissertation, Vienna University of Technology, 2007Google Scholar
  24. 24.
    P. Tech, Pmd tech 41k-s datasheet. PMD Tech. http://de.pluspedia.org/wiki/PMDTechnologies. Accessed Jan 2016
  25. 25.
    S. Koyama, K. Onozawa, K. Tanaka, Y. Kato, A 3D 2.1 Mpixel image sensor for single-lens camera systems, in IEEE International Solid-State Circuits Conference(ISSCC 2013), (San Francisco, USA, 2013) pp. 492–493Google Scholar
  26. 26.
    M. Davidovic, G. Zach, K. Schneider-Hornstein, H. Zimmermann, Range finding sensor in 90 nm CMOS with bridge correlator based background light suppression. in ESSCIRC, (Seville, 2010), pp. 298–301Google Scholar
  27. 27.
    L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, R. Walker, An \(8 \times 16\)-pixel 92kSPAD time-resolved sensor with on-pixel 64ps 12b TDC and 100 MS/s real-time energy histogramming in 0.13 \(\upmu \)m CIS technology for PET/MRI applications. IEEE International Solid-State Circuits Conference(ISSCC 2013), (San Francisco, USA, 2013), pp. 486–487Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of EngineeringAssiut UniversityAssiutEgypt
  2. 2.Institute of Electrodynamics, Microwave and Circuit EngineeringTU WienViennaAustria

Personalised recommendations