Skip to main content

Performance Parameters

  • Chapter
  • First Online:
Non-Circular Journal Bearings

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 435 Accesses

Abstract

There may be number of parameters which can be explained in relation to non-circular journal bearings. Some of them related to thermal view has been listed and defined in the current section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

b :

Width of bearing, mm

C :

Radial clearance, μm

C h :

Horizontal clearance for elliptical journal bearing, μm

C m :

Minimum clearance when journal centre is coincident with geometric centre of the bearing, μm

C P :

Specific heat of the lubricating oil, J/kg °C

ID:

Inner diameter of the offset-halves journal bearing, mm

D Imin :

Minimum inner diameter of the elliptical journal bearing, mm

D Imax :

Maximum inner diameter of the elliptical journal bearing, mm

° C:

Degree Celsius

e :

Eccentricity, m

E M :

Elliptical ratio

h c :

Convection heat transfer coefficient of bush, W/m °C

h :

Film thickness for offset-halves and elliptical journal bearing, mm

K oil :

Thermal conductivity of lubricating oil, W/m °C

K s :

Thermal conductivity of bearing, W/m °C

l :

Length of the bearing, m

n :

Number of iterations

N :

Journal speed, rpm

ofr :

Oil flow rate, lt/min

O B :

Bearing centre

O J :

Journal centre

O L :

Lower lobe centre

O U :

Upper lobe centre

OD:

Outer diameter of the bearings, mm

P :

Film pressure, Pa

P(i, j)iso :

Isothermal pressure, Pa

P(i, j)th :

Thermal pressure, Pa

PTPA:

Parabolic temperature profile approximation

R :

Radius of journal, mm

R j :

Radius of journal, mm

r :

Bush radius, mm

Rbi:

Inner bush radius, mm

R L :

Radius of lower lobe of the bearing, mm

R U :

Radius of upper lobe of the bearing, mm

RTD:

Resistance temperature detector

s :

Bearing surface

t :

Thickness of bearing, m

T :

Lubricating film temperature, °C

T a :

Ambient temperature, °C

T b :

Bush temperature, °C

T L :

Temperature of the lower bounding surface (journal), °C

T m :

Mean temperature across the film, °C

T o :

Oil inlet temperature, °C

T s :

Surface temperature, °C

T U :

Temperature of the upper bounding surface (bearing)

THD:

Thermohydrodynamic

u, w :

Velocity components in X- and Z-directions, m/s

u L :

Velocity of lower bounding surface, m/s

u U :

Velocity of upper bounding surface, m/s

U :

Velocity of journal, m/s

x, y, z :

Coordinates in circumferential, radial, and axial directions

φ :

Attitude angle

ϕ 1, ϕ 2 :

Attitude angles from 0 to 180° (upper lobe) and 180–360° (lowerlobe), respectively

α :

Barus viscosity-pressure index, Pa−1

γ :

Temperature-viscosity coefficient of lubricant, K−1

δ :

Offset factor (C m/C)

ε :

Eccentricity ratio

ε 1, ε 2 :

Eccentricity ratio from 0 to 180° (upper lobe) and 180–360° (lower lobe), respectively

θ :

Angle measured from the horizontal split axis in the direction of rotation

μ :

Absolute viscosity, Pa s

μ ref :

Absolute viscosity at oil inlet temperature, Pa s

ρ :

Density of lubricating oil, kg/m3

ω :

Angular velocity of shaft, rad/s

References

  • Chauhan A. Experimental and theoretical investigations of the thermal behaviour of some non-circular journal bearing profiles, Ph.D. thesis, Mechanical Engineering Department, NIT Hamirpur (H.P.), India; 2011.

    Google Scholar 

  • Edgar Jr JG. Rotor bearing geometry. In: Proceedings of the first turbomachinery symposium. Texas A&M University, Oct. 1972. p. 119–41.

    Google Scholar 

  • Hori Y. Hydrodynamic lubrication. Tokyo: Springer; 2006.

    Google Scholar 

  • Hussain A, Mistry K, Biswas S, Athre K. Thermal analysis of non-circular bearing. Trans ASME J Tribol. 1996;118:246–54.

    Article  Google Scholar 

  • Kasolang S, Dwyer-Joyce RS. Observations of film thickness profile and cavitation around a journal bearing circumference. Tribol Trans. 2008;51:231–45.

    Article  Google Scholar 

  • San Andres L. Hydrodynamic fluid film bearings and their effect on the stability of rotating machinery. In: Design and analysis of high speed pumps. Educational notes RTO-EN-AVT-143, paper 10. Neuilly-sur-Seine, France: RTO; 2006. p. 10-1–10-36.

    Google Scholar 

  • Sehgal R, Swamy KNS, Athre K, Biswas S. A comparative study of the thermal behaviour of circular and non-circular journal bearings. Lubr Sci. 2000;12:329–44.

    Article  Google Scholar 

  • Sharma RK, Pandey RK. Effects of the temperature profile approximations across the film thickness in thermohydrodynamic analysis of lubricating films. Indian J Tribol. 2007;2:27–37.

    Google Scholar 

  • Stachowiak GW, Batchelor AW. Engineering tribology. The Netherlands: Elsevier Science Publishers B.V.; 1993. p. 123–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s) - SpringerBriefs

About this chapter

Cite this chapter

Chauhan, A. (2016). Performance Parameters. In: Non-Circular Journal Bearings. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-27333-4_3

Download citation

Publish with us

Policies and ethics