Skip to main content

Adjoint Optimization

  • Chapter
  • First Online:
  • 553 Accesses

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

Abstract

The adjoint method has a long history (Lions 1971) and is widely used in fluid control, airfoil optimization, meteorology, global helioseismology, and terrestrial seismology. Real-world optimization problems are typically functions of large numbers of parameters, ill posed, and computationally expensive. For instance, one may envisage the difficulty in minimizing drag due to flow over an airfoil or seeking a model of Earth’s interior that optimally fits observed seismograms, simply due to large number of ways one may alter the system. What parameters should one vary in order to achieve optimality?

‡ Material in this section is taken primarily from Hanasoge et al (2011) and Hanasoge et al (2012a).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bamberger A, Chavent G, Hemons C, Lailly P (1982) Inversion of normal incidence seismograms. Geophysics 47:757–770

    Article  Google Scholar 

  • Beliën AJC, Botchev MA, Goedbloed JP, van der Holst B, Keppens R (2002) FINESSE: axisymmetric MHD equilibria with flow. J Comput Phys 182(1): 91–117. http://www.sciencedirect.com/science/article/B6WHY-481662C-5/1/3cfcd06c0b8464d381f01ee3cc1d73bd

  • Bewley TR, Moin P, Temam R (2001) DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J Fluid Mech 447:179–225

    Article  MathSciNet  MATH  Google Scholar 

  • Birch AC, Gizon L (2007) Linear sensitivity of helioseismic travel times to local flows. Astron Nachr 328:228. DOI 10.1002/asna.200610724

    Article  MATH  Google Scholar 

  • Birch AC, Kosovichev AG, Duvall TL Jr (2004) Sensitivity of acoustic wave travel times to sound-speed perturbations in the solar interior. Astrophys J 608:580–600. DOI 10.1086/386361

    Article  Google Scholar 

  • Bozdaǧ E, Trampert J, Tromp J (2011) Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophys J Int 185:845–870. DOI 10.1111/j.1365-246X.2011.04970.x

    Article  Google Scholar 

  • Bunks C, Saleck FM, Zaleski S, Chavent G (1995) Multiscale seismic waveform inversion. Geophysics 60:1457–1473

    Article  Google Scholar 

  • Cameron R, Gizon L, Daiffallah K (2007) SLiM: a code for the simulation of wave propagation through an inhomogeneous, magnetised solar atmosphere. Astron Nachr 328:313. DOI 10.1002/asna.200610736

    Article  MATH  Google Scholar 

  • Cameron R, Gizon L, Duvall TL Jr (2008) Helioseismology of sunspots: confronting observations with three-dimensional MHD simulations of wave propagation. Sol Phys 251:291–308. DOI 10.1007/s11207-008-9148-1. 0802.1603

    Article  Google Scholar 

  • Duvall TL Jr, Jefferies SM, Harvey JW, Pomerantz MA (1993) Time-distance helioseismology. Nature 362:430–432. DOI 10.1038/362430a0

    Article  Google Scholar 

  • Duvall TL Jr, Kosovichev AG, Murawski K (1998) Random damping and frequency reduction of the solar f mode. Astrophys J Lett 505:L55. DOI 10. 1086/311595

    Google Scholar 

  • Fichtner A, Kennett BLN, Igel H, Bunge H (2008) Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. Geophys J Int 175:665–685. DOI 10.1111/j.1365-246X.2008. 03923.x

    Article  Google Scholar 

  • Fichtner A, Kennett BLN, Igel H, Bunge HP (2009) Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys J Int 179:1703–1725. DOI 10.1111/j.1365-246X. 2009.04368.x

    Article  Google Scholar 

  • Gee LS, Jordan TH (1992) Generalized seismological data functionals. Geophys J Int 111:363–390. DOI 10.1111/j.1365-246X.1992.tb00584.x

    Article  Google Scholar 

  • Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65:393–415

    Article  MATH  Google Scholar 

  • Gizon L (2004) Helioseismology of time-varying flows through the solar cycle. Sol Phys 224:217–228. DOI 10.1007/s11207-005-4983-9

    Article  Google Scholar 

  • Gizon L, Birch AC (2002) Time-distance helioseismology: the forward problem for random distributed sources. Astrophys J 571:966–986. DOI 10. 1086/340015

    Google Scholar 

  • Gizon L, Birch AC (2004) Time-distance helioseismology: noise estimation. Astrophys J 614:472–489. DOI 10.1086/423367

    Article  Google Scholar 

  • Gizon L, Hanasoge SM, Birch AC (2006) Scattering of acoustic waves by a magnetic cylinder: accuracy of the born approximation. Astrophys J 643:549–555. DOI 10.1086/502623. arXiv:0803.3839

    Google Scholar 

  • Gizon L, Schunker H, Baldner CS, Basu S, Birch AC, Bogart RS, Braun DC, Cameron R, Duvall TL, Hanasoge SM, Jackiewicz J, Roth M, Stahn T, Thompson MJ, Zharkov S (2009) Helioseismology of sunspots: a case study of NOAA region 9787. Space Sci Rev 144:249–273. DOI 10.1007/ s11214-008-9466-5

    Article  Google Scholar 

  • Gizon L, Birch AC, Spruit HC (2010) Local helioseismology: three-dimensional imaging of the solar interior. Annu Rev Astron Astrophys 48:289–338. DOI 10.1146/annurev-astro-082708-101722. 1001.0930

    Article  Google Scholar 

  • Goedbloed JPH, Poedts S (2004) Principles of magnetohydrodynamics: with applications to laboratory and astrophysical plasmas. Cambridge University Press, Cambridge. DOI 10.2277/0521626072

    Google Scholar 

  • Hanasoge S, Birch A, Gizon L, Tromp J (2012a) Seismic probes of solar interior magnetic structure. Phys Rev Lett 109(10):101101. DOI 10.1103/ PhysRevLett.109.101101. 1207.4352

    Article  Google Scholar 

  • Hanasoge SM, Couvidat S, Rajaguru SP, Birch AC (2008) Impact of locally suppressed wave sources on helioseismic traveltimes. Mon Not R Astron Soc 391:1931–1939. DOI 10.1111/j.1365-2966.2008.14013.x. 0707.1369

    Article  Google Scholar 

  • Hanasoge SM, Birch A, Gizon L, Tromp J (2011) The adjoint method applied to time-distance helioseismology. Astrophys J 738:100. DOI 10. 1088/0004-637X/738/1/100. 1105.4263

    Google Scholar 

  • Igel H, Djikpéssé H, Tarantola A (1996) Waveform inversion of marine reflection seismograms for P impedance and Poisson’s ratio. Geophys J Int 124: 363–371. DOI 10.1111/j.1365-246X.1996.tb07026.x

    Article  Google Scholar 

  • Jackiewicz J, Gizon L, Birch AC, Duvall TL Jr (2007) Time-distance helioseismology: sensitivity of f-mode travel times to flows. Astrophys J 671:1051–1064. DOI 10.1086/522914. 0708.3554

    Article  Google Scholar 

  • Jameson A (1988) Aerodynamic design via control theory. J Sci Comput 3:233–260

    Article  MATH  Google Scholar 

  • Korzennik SG, Rabello-Soares MC, Schou J (2004) On the determination of Michelson Doppler imager high-degree mode frequencies. Astrophys J 602:481–516. DOI 10.1086/381021. arXiv:astro-ph/0207371

    Google Scholar 

  • Kosovichev AG, Duvall TL Jr (1997) Acoustic tomography of solar convective flows and structures. In: Pijpers FP, Christensen-Dalsgaard J, Rosenthal CS (eds) SCORe’96: solar convection and oscillations and their relationship. Astrophysics and space science library, vol 225. Springer, Berlin, pp 241–260

    Chapter  Google Scholar 

  • LeDimet FX, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A:97–110

    Article  Google Scholar 

  • Lions JL (1971) Optimal control of systems governed by partial differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  • Liu Q, Tromp J (2008) Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods. Geophys J Int 174:265–286. DOI 10.1111/j.1365-246X.2008.03798.x

    Article  Google Scholar 

  • Lynden-Bell D, Ostriker JP (1967) On the stability of differentially rotating bodies. Mon Not R Astron Soc 136:293

    Article  MATH  Google Scholar 

  • Ravaut C, Operto S, Improta L, Virieux J, Herrero A, Dell’Aversana P (2004) Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt. Geophys J Int 159:1032–1056. DOI 10.1111/j.1365-246X.2004.02442.x

    Article  Google Scholar 

  • Rempel M, Schüssler M, Knölker M (2009) Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys J 691:640–649. DOI 10.1088/0004-637X/691/1/640. 0808.3294

    Article  Google Scholar 

  • Rosenwald RD, Rabaey GF (1991) Application of the continuous orthonormalization and adjoint methods to the computation of solar eigenfrequencies and eigenfrequency sensitivities. Astrophys J Suppl 77:97–117. DOI 10.1086/191600

    Article  Google Scholar 

  • Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31:L07,614. DOI 10.1029/2004GL019491

    Google Scholar 

  • Sirgue L, Pratt RG (2004) Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics 69:231–248

    Article  Google Scholar 

  • Talagrand O, Courtier P (1987) Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory. Q J R Meteorol Soc 113: 1311–1328. DOI 10.1256/smsqj.47811

    Article  Google Scholar 

  • Tape C, Liu Q, Tromp J (2007) Finite-frequency tomography using adjoint methods — methodology and examples using membrane surface waves. Geophys J Int 168:1105–1129

    Article  Google Scholar 

  • Tape C, Liu Q, Maggi A, Tromp J (2009) Adjoint tomography of the Southern California crust. Science 325(5943):988–992. DOI 10.1126/science.1175298. http://www.sciencemag.org/cgi/content/abstract/325/5943/988. http://www.sciencemag.org/cgi/reprint/325/5943/988.pdf

  • Tarantola A (1984) Linearized inversion of seismic reflection data. Geophys Prospect 32:998–1015

    Article  Google Scholar 

  • Tromp J, Tape C, Liu Q (2005) Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys J Int 160:195–216. DOI 10.1111/j.1365-246X.2004.02453.x

    Article  Google Scholar 

  • Tromp J, Luo Y, Hanasoge S, Peter D (2010) Noise cross-correlation sensitivity kernels. Geophys J Int 183:791–819, DOI 10.1111/j.1365-246X. 2010.04721.x

    Article  Google Scholar 

  • Woodard MF (1997) Implications of localized, acoustic absorption for heliotomographic analysis of sunspots. Astrophys J 485:890–894. DOI 10. 1086/304468

    Google Scholar 

  • Zhu H, Luo Y, Nissen-Meyer T, Morency C, Tromp J (2009) Elastic Imaging and time-lapse migration based on adjoint methods. Geophysics 74(6):167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author

About this chapter

Cite this chapter

Hanasoge, S. (2015). Adjoint Optimization. In: Imaging Convection and Magnetism in the Sun. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-27330-3_3

Download citation

Publish with us

Policies and ethics