Skip to main content

Introduction

  • Chapter
  • First Online:
Imaging Convection and Magnetism in the Sun

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 522 Accesses

Abstract

The Sun was formed roughly 4.5 billion years ago from the gravitational collapse of a gaseous cloud. The core of this cloud settled in the center, gathering an overwhelming fraction of the matter of the cloud ( ∼ 99.85%) while the rest formed a disk that would eventually turn into the solar system. Owing to gravitational forcing, the central mass gained temperature and the core, reaching a critical temperature of about 15 million K, began to undergo nuclear fusion. The present Sun is primarily composed of Hydrogen ( ∼ 71%) and Helium ( ∼ 27%), the rest being metals (in astrophysical jargon, elements other than Hydrogen and Helium are termed ‘metals’).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balbus SA (2009) A simple model for solar isorotational contours. Mon Not R Astron Soc 395:2056–2064. DOI 10.1111/j.1365-2966.2009.14469.x. 0809.2883

    Article  Google Scholar 

  • Balbus SA, Schaan E (2012) The stability of stratified, rotating systems and the generation of vorticity in the sun. Mon Not R Astron Soc 426:1546–1557. DOI 10.1111/j.1365-2966.2012.21729.x. 1207.3810

    Article  Google Scholar 

  • Baldner CS, Schou J (2012) Effects of asymmetric flows in solar convection on oscillation modes. Astrophys J Lett 760:L1. DOI 10.1088/2041-8205/ 760/1/L1. 1210.1583

    Article  Google Scholar 

  • Böhm-Vitense E (1958) Über die wasserstoffkonvektionszone in sternen verschiedener effektivtemperaturen und leuchtkräfte. mit 5 textabbildungen. Z Astrophys 46:108

    Google Scholar 

  • Borrero JM, Tomczyk S, Norton A, Darnell T, Schou J, Scherrer P, Bush R, Liu Y (2007) Magnetic field vector retrieval with the helioseismic and magnetic imager. Sol Phys 240:177–196. DOI 10.1007/s11207-006-0219-x. astro-ph/0611565

    Article  Google Scholar 

  • Brandenburg A (2005) Distributed versus tachocline dynamos. arXiv Astrophysics e-prints arXiv:astro-ph/0512638

    Google Scholar 

  • Cameron R, Gizon L, Duvall TL Jr (2008) Helioseismology of sunspots: confronting observations with three-dimensional MHD simulations of wave propagation. Sol Phys 251:291–308. DOI 10.1007/s11207-008-9148-1. 0802.1603

    Article  Google Scholar 

  • Christensen-Dalsgaard J (2002) Helioseismology. Rev Mod Phys 74:1073–1129. DOI 10.1103/ RevModPhys.74.1073. arXiv:astro-ph/0207403

    Google Scholar 

  • Christensen–Dalsgaard J (2003) Lecture notes on stellar oscillations, 5th edn. http://astro.phys.au.dk/∼jcd/oscilnotes/

    Google Scholar 

  • Christensen–Dalsgaard J (2008) Lecture notes on stellar structure and evolution, 6th edn. http://astro.phys.au.dk/∼jcd/evolnotes/LN_stellar_structure.pdf

  • Christensen-Dalsgaard J, Dappen W, Ajukov SV, Anderson ER, Antia HM, Basu S, Baturin VA, Berthomieu G, Chaboyer B, Chitre SM, Cox AN, Demarque P, Donatowicz J, Dziembowski WA, Gabriel M, Gough DO, Guenther DB, Guzik JA, Harvey JW, Hill F, Houdek G, Iglesias CA, Kosovichev AG, Leibacher JW, Morel P, Proffitt CR, Provost J, Reiter J, Rhodes EJ Jr, Rogers FJ, Roxburgh IW, Thompson MJ, Ulrich RK (1996) The current state of solar modeling. Science 272:1286

    Article  Google Scholar 

  • Deubner FL (1975) Observations of low wavenumber nonradial eigenmodes of the sun. Astron Astrophys 44:371–375

    Google Scholar 

  • Duvall TL Jr (1982) A dispersion law for solar oscillations. Nature 300:242

    Article  Google Scholar 

  • Duvall TL Jr, Harvey JW, Pomerantz MA (1986) Latitude and depth variation of solar rotation. Nature 321:500

    Article  Google Scholar 

  • Duvall TL Jr, Jefferies SM, Harvey JW, Pomerantz MA (1993) Time-distance helioseismology. Nature 362:430–432. DOI 10.1038/362430a0

    Article  Google Scholar 

  • Duvall TL Jr, D’Silva S, Jefferies SM, Harvey JW, Schou J (1996) Downflows under sunspots detected by helioseismic tomography. Nature 379:235. DOI 10.1038/379235a0

    Article  Google Scholar 

  • Duvall TL Jr, Birch AC, Gizon L (2006) Direct measurement of travel-time kernels for helioseismology. Astrophys J 646:553–559, DOI 10.1086/504792

    Article  Google Scholar 

  • Gizon L, Birch AC (2002) Time-distance helioseismology: the forward problem for random distributed sources. Astrophys J 571:966–986. DOI 10. 1086/340015

    Google Scholar 

  • Gizon L, Birch AC (2005) Local helioseismology. Living Rev Sol Phys 2:6

    Article  Google Scholar 

  • Gizon L, Birch AC, Spruit HC (2010) Local helioseismology: three-dimensional imaging of the solar interior. Annu Rev Astron Astrophys 48:289–338. DOI 10.1146/annurev-astro-082708-101722. 1001.0930

    Article  Google Scholar 

  • Haigh JD (2007) The sun and the earth’s climate. Living Rev Sol Phys 4(2). http://adsabs.harvard.edu/abs/2007LRSP....4....2H

  • Hanasoge SM (2008) Seismic halos around active regions: a magnetohydrodynamic theory. Astrophys J 680:1457–1466. DOI 10.1086/587934. 0712.3578

    Article  Google Scholar 

  • Hanasoge SM, Larsen RM, Duvall TL Jr, DeRosa ML, Hurlburt NE, Schou J, Roth M, Christensen-Dalsgaard J, Lele SK (2006) Computational acoustics in spherical geometry: steps toward validating helioseismology. Astrophys J 648: 1268–1275. DOI 10.1086/505927

    Article  Google Scholar 

  • Hanasoge SM, Couvidat S, Rajaguru SP, Birch AC (2008) Impact of locally suppressed wave sources on helioseismic traveltimes. Mon Not R Astron Soc 391:1931–1939. DOI 10.1111/j.1365-2966.2008.14013.x. 0707.1369

    Article  Google Scholar 

  • Hanasoge SM, Duvall TL Jr, Sreenivasan KR (2012b) Anomalously weak solar convection. Proc Natl Acad Sci 109(30):11,928–11,932

    Google Scholar 

  • Hartlep T, Miesch MS, Mansour NN (2008a) Wave propagation in the magnetic sun. arXiv e-prints 0805.0333

    Google Scholar 

  • Harvey JW, Abdel-Gawad K, Ball W, Boxum B, Bull F, Cole J, Cole L, Colley S, Dowdney K, Drake R (1988) The GONG instrument. In ESA, Seismology of the Sun and Sun-Like Stars, p 203–208 (SEE N89-25819 19-92). http://adsabs.harvard.edu/abs/1988ESASP.286..203H

  • Hill F (1988) Rings and trumpets - three-dimensional power spectra of solar oscillations. Astrophys J 333:996–1013. DOI 10.1086/166807

    Article  Google Scholar 

  • Hill F, Fischer G, Grier J, Leibacher JW, Jones HB, Jones PP, Kupke R, Stebbins RT (1994) The global oscillation network group site survey. 1: data collection and analysis methods. Sol Phys 152:321–349. DOI 10.1007/ BF00680443

    Article  Google Scholar 

  • Judge P, Kleint L, Uitenbroek H, Rempel M, Suematsu Y, Tsuneta S (2014) Photon mean free paths, scattering, and ever-increasing telescope resolution. arXiv e-prints 1409.7866

    Google Scholar 

  • Kitchatinov LL, Rüdiger G (2005) Differential rotation and meridional flow in the solar convection zone and beneath. Astron Nachr 326:379–385. DOI 10.1002/asna.200510368. arXiv:astro-ph/0506239

    Google Scholar 

  • Kumar P, Basu S (2000) Source depth for solar P-modes. Astrophys J Lett 545: L65–L68. DOI 10.1086/317325. astro-ph/0006204

    Article  Google Scholar 

  • Leibacher JW, Stein RF (1971) A new description of the solar five-minute oscillation. Astrophys Lett 7:191–192

    Google Scholar 

  • Leighton RB, Noyes RW, Simon GW (1962) Velocity fields in the solar atmosphere. I. preliminary report. Astrophys J 135:474. DOI 10.1086/ 147285

    Google Scholar 

  • Lighthill MJ (1952) On sound generated aerodynamically. I. general theory. Proc R Soc London Ser A 211(1107):564–587

    Article  MathSciNet  MATH  Google Scholar 

  • Lindsey C, Braun DC (1997) Helioseismic holography. Astrophys J 485:895. DOI 10.1086/304445

    Article  Google Scholar 

  • Miesch MS, Hindman BW (2011) Gyroscopic pumping in the solar near-surface shear layer. Astrophys J 743:79. DOI 10.1088/0004-637X/ 743/1/79. 1106.4107

    Article  Google Scholar 

  • Miesch MS, Featherstone NA, Rempel M, Trampedach R (2012) On the amplitude of convective velocities in the deep solar interior. Astrophys J 757:128. DOI 10.1088/0004-637X/757/2/128. 1205.1530

    Article  Google Scholar 

  • Moradi H, Cally PS (2014) Sensitivity of helioseismic travel times to the imposition of a Lorentz force limiter in computational helioseismology. Astrophys J Lett 782:L26. DOI 10.1088/2041-8205/782/ 2/L26. 1401.5518

    Article  Google Scholar 

  • Nordlund Å, Stein RF, Asplund M (2009) Solar surface convection. Living Rev Sol Phys 6:2

    Article  Google Scholar 

  • Noyes RW, Weiss NO, Vaughan AH (1984) The relation between stellar rotation rate and activity cycle periods. Astrophys J 287:769–773. DOI 10. 1086/162735

    Google Scholar 

  • Parchevsky KV, Kosovichev AG (2007) Three-dimensional numerical simulations of the acoustic wave field in the upper convection zone of the sun. Astrophys J 666:547–558. DOI 10.1086/520108. arXiv:astro-ph/0612364

    Google Scholar 

  • Proffitt CR, Michaud G (1990) Gravitational settling in solar models. In: Bulletin of the American Astronomical Society. Bulletin of the American Astronomical Society, vol 22, p 1198. http://adsabs.harvard.edu/abs/1990BAAS...22Q1198P

  • Pulkkinen T (2007) Space weather: terrestrial perspective. Living Rev Sol Phys 4(1). http://adsabs.harvard.edu/abs/2007LRSP....4....1P

  • Rempel M (2005) Solar differential rotation and meridional flow: the role of a subadiabatic tachocline for the Taylor-Proudman balance. Astrophys J 622: 1320–1332. DOI 10.1086/428282. arXiv:astro-ph/0604451

    Google Scholar 

  • Rempel M, Schüssler M, Knölker M (2009) Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys J 691:640–649. DOI 10.1088/0004-637X/691/1/640. 0808.3294

    Article  Google Scholar 

  • Rhodes EJ Jr, Ulrich RK, Simon GW (1977) Observations of nonradial p-mode oscillations on the sun. Astrophys J 218:901–919. DOI 10.1086/ 155745

    Article  Google Scholar 

  • Scherrer PH, Bogart RS, Bush RI, Hoeksema JT, Kosovichev AG, Schou J, Rosenberg W, Springer L, Tarbell TD, Title A, Wolfson CJ, Zayer I, MDI Engineering Team (1995) The solar oscillations investigation - Michelson Doppler imager. Sol Phys 162:129–188. DOI 10.1007/BF00733429

    Article  Google Scholar 

  • Schou J, Antia HM, Basu S, Bogart RS, Bush RI, Chitre SM, Christensen-Dalsgaard J, di Mauro MP, Dziembowski WA, Eff-Darwich A, Gough DO, Haber DA, Hoeksema JT, Howe R, Korzennik SG, Kosovichev AG, Larsen RM, Pijpers FP, Scherrer PH, Sekii T, Tarbell TD, Title AM, Thompson MJ, Toomre J (1998) Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler imager. Astrophys J 505: 390–417. DOI 10.1086/306146

    Article  Google Scholar 

  • Schou J, Scherrer PH, Bush RI, Wachter R, Couvidat S, Rabello-Soares MC, Bogart RS, Hoeksema JT, Liu Y, Duvall TL, Akin DJ, Allard BA, Miles JW, Rairden R, Shine RA, Tarbell TD, Title AM, Wolfson CJ, Elmore DF, Norton AA, Tomczyk S (2012) Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol Phys 275: 229–259. DOI 10.1007/s11207-011-9842-2

    Article  Google Scholar 

  • Schrijver CJ, Zwaan C (2000) Solar and stellar magnetic activity. Cambridge astrophysics series 34, Cambridge University Press, Cambridge. http://adsabs.harvard.edu/abs/2000ssma.book.....S

  • Schrijver CJ, Hagenaar HJ, Title AM (1997) On the patterns of the solar granulation and supergranulation. Astrophys J 475:328. DOI 10.1086/ 303528

    Article  Google Scholar 

  • Stix M (2004) The Sun: and introduction. Springer, Berlin

    MATH  Google Scholar 

  • Swisdak M, Zweibel E (1999) Effects of large-scale convection on p-mode frequencies. Astrophys J 512:442–453. DOI 10.1086/306764. arXiv:astro-ph/9809135

    Google Scholar 

  • Thoul AA, Bahcall JN, Loeb A (1994) Element diffusion in the solar interior. Astrophys J 421:828–842. DOI 10.1086/173695. astro-ph/9304005

    Article  Google Scholar 

  • Ulrich RK (1970) The five-minute oscillations on the solar surface. Astrophys J 162:993. DOI 10.1086/150731

    Article  Google Scholar 

  • Woodard MF (1997) Implications of localized, acoustic absorption for heliotomographic analysis of sunspots. Astrophys J 485:890–894. DOI 10. 1086/304468

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author

About this chapter

Cite this chapter

Hanasoge, S. (2015). Introduction. In: Imaging Convection and Magnetism in the Sun. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-27330-3_1

Download citation

Publish with us

Policies and ethics