Skip to main content

Physiology of Hemostasis

  • Chapter
  • First Online:
Anticoagulation and Hemostasis in Neurosurgery

Abstract

Hemostasis is a complex process mediated by enzymes, activators, inhibitors, platelets, neutrophils, and endothelial cells. Hemostasis helps close off damaged blood vessels, keep blood in a fluid state and dissolve blood clots following restoration of vascular integrity. Hemostasis is now also known to play an important role in wound healing and endothelial barrier protection and function. Further to the classic coagulation cascade or waterfall hypothesis and the cell-based model of coagulation, newer concepts have enabled better understanding of the blood coagulation process. Current molecular concepts have enabled a reappraisal of the intrinsic pathway of coagulation. Three physiological triggers of activation of the intrinsic pathway are now known to include collagen, the linear phosphate polymers, termed polyphosphates (PolyP), and neutrophil extracellular traps (NETs). NETs are also now known to have a role in fibrinolysis. DNA and histones are components of NETs that are released at the site of infection and intravascular thrombi. Large fibrin degradation products (FDP) bound to combinations of DNA and histones may help stabilize lysing clots. This understanding has led to a rationale for using DNAse as an adjunct to thrombolytic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colman RW, Hirsh J, Marder VJ, Salzman EW. Hemostasis and thrombosis. Basic principles and clinical practice. 3rd ed. Philadelphia, PA: J.B. Lippincott; 1994.

    Google Scholar 

  2. Loscalzo J, Schafer AI. Thrombosis and hemorrhage. 2nd ed. Baltimore: Williams and Wilkins; 1998.

    Google Scholar 

  3. Celi A, Lorenzet R, Furie B, Furie BC. Semin Hematol. 1997;34(4):327–35.

    CAS  PubMed  Google Scholar 

  4. Kiowski W, Osswald S. J Cardiovasc Pharmacol. 1993;21 Suppl 2:S45–8.

    Article  PubMed  Google Scholar 

  5. Kawahara J, Sano H, Fukuzaki H, Saito K, Hirouchi H. Am J Hypertens. 1989;2(9):724–6.

    Article  CAS  PubMed  Google Scholar 

  6. DiPasquale G, Andreoli A, Lusa AM, Urbinati S, Biancoli S, Cere E, Borgatti ML, Pinelli G. J Neurosurg Sci. 1998;42 Suppl 1:33–6.

    CAS  Google Scholar 

  7. Svigelj V, Grad A, Kiauta T. Acta Neurol Scand. 1996;94(2):120–6.

    Article  CAS  PubMed  Google Scholar 

  8. Nichols WL, Bowie EJ, editors. A history of blood coagulation: Charles A Owen, Jr. Rochester, MN: Mayo Foundation for Medical Education and Research; 2001.

    Google Scholar 

  9. Morawitz P. The chemistry of blood coagulation [Die Chemie der Blutgerinnung] (R Hartman & PF Guenter, Trans.). Springfield, IL: Charles C Thomas; 1958.

    Google Scholar 

  10. Owen PA. The coagulation of blood: investigations on a new clotting factor. Acta Medica Scandinavia. 1947;194:521–49.

    Google Scholar 

  11. Von Willebrand EA. Uber hereditare pseudohemophilie [On hereditary pseudohemophilia]. Acta Med Scand. 1931;76:521–49.

    Article  Google Scholar 

  12. Alexander V, Goldstein R, Landwehr G, Cook C. Coagulation serum prothrombin conversion accelerator (SPCA) deficiency: a hitherto unrecognized coagulation defect with hemorrhage rectified by serum and serum fraction. J Clin Invest. 1951;30:596–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patek J, Stetson RH. Hemophilia: 1. The abnormal coagulation of blood and its relation to the blood platelets. J Clin Invest. 1936;15:531–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aggrelor PM, White SJ, Gladenning MB, et al. Plasma thromboplastin component (PTC) deficiency: a new disease resembling hemophilia. Proc Soc Exp Biol Med. 1952;79:692–4.

    Article  Google Scholar 

  15. Briggs R, Douglas AS, Macfarlane RG, et al. Christmas disease: a condition previously mistaken for hemophilia. Br Med J. 1952;2:1378–82.

    Article  Google Scholar 

  16. Schulman I, Smith CH. Hemorrhagic disease in an infant due to deficiency of a previously undescribed clotting factor. Blood. 1952;7:794–807.

    CAS  PubMed  Google Scholar 

  17. Rosenthal RL, Dreskinoff OH, Rosenthal N. New hemophilia-like disease caused by a deficiency of a third plasma thromboplastin factor. Proc Soc Exp Biol Med. 1953;82:171–4.

    Article  CAS  PubMed  Google Scholar 

  18. Hougie C, Barrow EM, Graham JB. Segregation of an hereditary hemorrhagic state from the heterogenous group heretofore called ‘stable factor’ (SPCA) proconvertin, factor VII deficiency. J Clin Invest. 1977;36:485–96.

    Article  Google Scholar 

  19. Telfer TR, Denson KW, Wright DR. A “new” coagulation defect. Semin Hematol. 1956;6:479–93.

    Google Scholar 

  20. Macfarlane RG. An enzyme cascade in the blood clotting mechanism, and its function as a biological amplifier. Nature. 1964;202:498–9.

    Article  CAS  PubMed  Google Scholar 

  21. Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145:1310–2.

    Article  CAS  PubMed  Google Scholar 

  22. Luchtman-Jones L, Broze J. The current status of coagulation. Ann Med. 1995;27(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  23. Hoffbrand VA. In: Catovsky D, Tuddenham E, editors. Postgraduate hematology. 5th ed. Malden, MA: Blackwell; 2005.

    Chapter  Google Scholar 

  24. Kleischnitz C, Stoll G, Bendszus M, Schuh K, et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med. 2006;203(3):513–8.

    Article  Google Scholar 

  25. Osterud B, Bjorklid E. Sources of tissue factor. Semin Thromb Hemost. 2006;32:11–23.

    Article  PubMed  Google Scholar 

  26. van den Meijden PE, Munnix IC, Auger JM, et al. Dual role of collagen in factor XII-dependent thrombus formation. Blood. 2009;114:881–90.

    Article  PubMed  Google Scholar 

  27. Renne T, Gailani D. Role of Factor XII in hemostasis and thrombosis: clinical implications. Expert Rev Cardiovasc Ther. 2007;5:733–41.

    Article  CAS  PubMed  Google Scholar 

  28. Von Bruhl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209:819–35.

    Article  Google Scholar 

  29. Muller I, Mutch NJ, Schenk WA, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009;139:1143–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pauer HU, Renne T, Hemmerlein B, et al. Targeted deletion of murine coagulation factor XII gene – a model for contact phase activation in vivo. Thromb Haemost. 2004;92:503–8.

    CAS  PubMed  Google Scholar 

  31. Ratnoff OD, Colopy JE. A familial hemorrhagic trait associated with a deficiency of a clot promoting fraction of plasma. J Clin Invest. 1955;34:602–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93:327–58.

    Article  CAS  PubMed  Google Scholar 

  33. Choi SH, Smith SA, Morrissey JH. Polyphosphates is a cofactor for the activation of factor XI by thrombin. Blood. 2011;118:6963–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smith SA, Choi SH, Davis-Harrison R, et al. Polyphosphate esters differential effects on blood clotting, depending on polymer size. Blood. 2010;116:4353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kannenmeier C, Shibamiya A, Nakazawa F, et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A. 2007;104:6388–93.

    Article  Google Scholar 

  36. Morrissey JH, Smith SA. Polyphosphate as modulator of hemostasis, thrombosis and inflammation. Thromb Haemost. 2015;13 suppl 1:S92–7.

    Article  CAS  Google Scholar 

  37. Ruiz FA, Lea CR, Oldfield E, et al. Human platelet dense granules contain polyphosphates and are similar to acidocalconomes of bacteria and unicellular eukaryotes. J Biol Chem. 2004;279:44250–442557.

    Article  CAS  PubMed  Google Scholar 

  38. Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation and inflammation. Blood. 2012;119:5972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dinarvand P, Hassanian SM, Qureshi SH, et al. Polyphosphate amplifies proinflammatory responses of nuclear proteins through interaction with receptor for advanced glycation end products and P2Y1 purinergic receptor. Blood. 2014;123:935–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holmstrom KM, Marina N, Baev AY, et al. Signaling properties of inorganic polyphosphate in the mammalian brain. Nat Commun. 2013;4:1362.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hassanian SM, Dinarvand P, Smith SA, Rezaie AR. Inorganic polyphosphate has elicits proinflammatory responses through activation of mammalian target of rapamycin complexes 1 and 2 in vascular endothelial cells. J Thromb Haemost. 2015;13:800–71.

    Article  Google Scholar 

  42. Brinkmann V, Reichard U, Goosman C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.

    Article  CAS  PubMed  Google Scholar 

  43. Gould TJ, Lysov Z, Liaw PC. Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost. 2015;13 Suppl 1:882–91.

    Google Scholar 

  44. Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189:2689–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tadie JM, Bae HB, Jiang S, et al. HMGB1 promotes neutrophil extracellular trap formation through interaction with toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol. 2013;304:L342–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maugeri N, Campana L, Gavina M, et al. Activated platelets present high mobility group box 1 to neutrophils, including autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12:2074–88.

    Article  CAS  PubMed  Google Scholar 

  47. Schorn C, Janko C, Latzko M, et al. Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils and basophils but not in mononuclear cells. Front Immunol. 2012;3:277.

    PubMed  PubMed Central  Google Scholar 

  48. Mitroulis I, Kambas K, Chrysanthapoulou A, et al. Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in goat. PLoS One. 2011;6:c29318.

    Article  Google Scholar 

  49. Schauer C, Janko C, Munoz LE, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20:511–7.

    Article  CAS  PubMed  Google Scholar 

  50. Esmon CT, Xu J, Lupu F. Innate immunity and coagulation. J Thromb Haemost. 2011;9 Suppl 1:182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Esmon CT. Coagulation. In: Fink MP, Abraham E, Vincent J-L, Kochanek PM, editors. Textbook of critical care. 5th ed. Philadelphia: Elsevier Saunders; 2005. p. 165–72.

    Google Scholar 

  52. Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci U S A. 1981;78:2249–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walker FJ. Regulation of activated protein C by a new protein: a role for bovine protein S. J Biol Chem. 1980;255:5521–4.

    CAS  PubMed  Google Scholar 

  54. Abeyama K, Stern DM, Ito Y, et al. The N-t domain of thrombomodulin sequesters high mobility group-B1 protein, a novel anti-inflammatory mechanism. J Clin Invest. 2005;115:1267–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–9.

    Article  CAS  PubMed  Google Scholar 

  56. Cohen MJ, Brohi K, Calfee CS, et al. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care. 2009;13:R174.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.

    Article  CAS  PubMed  Google Scholar 

  58. Delvaeye M, Noris M, De Vriese A, Esmon T, et al. Thrombomodulin mutations in atypical hemolytic uremic syndrome. N Engl J Med. 2009;361:345–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bajar L, Morser J, Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem. 1996;271:16603–8.

    Article  Google Scholar 

  60. Campbell WD, Lazoura E, Okada N, et al. Inactivation of C3a and C5a octapeptides by carboxypeptidase R and carboxypeptidase N. Microbiol Immunol. 2002;46:131–4.

    Article  CAS  PubMed  Google Scholar 

  61. Myles T, Nishimura T, Yun TH, et al. Thrombin activatable fibrinolysis inhibitor: a potential regulator of vascular inflammation. J Biol Chem. 2003;278:51059–67.

    Article  CAS  PubMed  Google Scholar 

  62. Li Y, Karlin A, Loike JD, et al. A critical concentration of neutrophils is required for effective bacterial killing in suspension. Proc Natl Acad Sci U S A. 2002;99:8289–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. West AP, Koblanky AA, Ghosh S. Recognition and signaling by Toll-like receptors. Annu Rev Cell Dev Biol. 2006;22:409–37.

    Article  CAS  PubMed  Google Scholar 

  64. Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensure bacteria in septic blood. Nat Med. 2007;13:463–9.

    Article  CAS  PubMed  Google Scholar 

  65. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107:15880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Massberg S, Grahl L, von Bruehl M-L, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16:887–97.

    Article  CAS  PubMed  Google Scholar 

  67. Liu LW, Vu TKH, Esmon CT, et al. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J Biol Chem. 1991;266:16977–80.

    CAS  PubMed  Google Scholar 

  68. Carnerer E, Gjernes E, Wiger M, et al. Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J Biol Chem. 2000;275:6580–5.

    Article  Google Scholar 

  69. Nysteadt S, Emillson K, Wahlstedt C, et al. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A. 1994;91:9208–12.

    Article  Google Scholar 

  70. Riewald M, Ruf W. Mechanistic coupling of proteinase signaling and initiation of coagulation by tissue factor. Proc Natl Acad Sci U S A. 2001;98:7742–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoffman M, Monroe DM. The multiple roles of tissue factor in wound healing. Front Biosci. 2012;4:713–21.

    Article  Google Scholar 

  72. Santuli RJ, Derian CK, Darrow AL, et al. Evidence for the presence of proteinase-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci U S A. 1995;92:9151–5.

    Article  Google Scholar 

  73. Finigan JH, Dudek SM, Singleton PA, et al. Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem. 2005;280:17286–93.

    Article  CAS  PubMed  Google Scholar 

  74. Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014;123:2768–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Longstaff C, Varju I, Sotonyi P, et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin. DNA and histones. J Biol Chem. 2013;288:6946–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Iqbal M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fareed, J., Iqbal, O. (2016). Physiology of Hemostasis. In: Loftus, C. (eds) Anticoagulation and Hemostasis in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-27327-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27327-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27325-9

  • Online ISBN: 978-3-319-27327-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics