Skip to main content

Macrophomina phaseolina: The Most Destructive Soybean Fungal Pathogen of Global Concern

  • Chapter
  • First Online:
Current Trends in Plant Disease Diagnostics and Management Practices

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Charcoal rot caused by the fungus, Macrophomina phaseolina, have emerged as serious concern for cultivation of soybean under climate change scenario worldwide. Macrophomina phaseolina causes huge annual losses to the crop and can survives in the soil mainly as microsclerotia for 2 years or longer and; germinate repeatedly during the crop-growing season. The pathogen generally attacks the young plants when their growth is retarded due to unfavourable conditions. Moreover, charcoal rot is usually most severe in older plants which have been subjected to stressful environmental conditions such as high temperature, drought, or poor fertility. The disease severity is directly related to the humidity, temperature, tillage practices and soil nutrient conditions. This review deals with the details of pathogen and its management approaches. The management of disease through stress management is the most viable solution to overcome the menace of it. Although, the fungicide is the means of disease prevention but cultural practices, irrigation management during drought and resistant cultivars are the most practical means of control as the pathogen have more than 500 plant species to inhabit. The possibilities in substantial yield reduction under present changing climate underscore the need for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Burney K, Asad S (1991) Current status of sunflower diseases in Pakistan. In: Ghaffar A, Shahzad S (eds) Proceedings of the national symposium on status of plant pathology in Pakistan, 31 December 1991. Department of Botany, University of Karachi, Karachi, p 53

    Google Scholar 

  • Almeida AMR, Amorim L, Bergamin A, Torres E, Farias JRB, Benato LC, Pinto MC, Valentim N (2003) Progress of soybean charcoal rot under tillage and no-tillage systems in Brazil. Fitopatol Bras 28:131–135

    Google Scholar 

  • Ammon V, Wyllie TD, Brown MF Jr (1974) An ultra structural investigation of pathological alterations induced by Macrophomina phaseolina (Tassi)Goidin seedlings of soybean, Glycine max (L.). Merrill Physiol Plant Pathol 4:1–4

    Article  Google Scholar 

  • Ammon V, Wyllie TD, Brown MF Jr (1975) Investigation of the infection process of Macrophomina phaseolina on the surface of soybean roots using scanning electron microscopy. Mycopathologia 55:77–81

    Article  Google Scholar 

  • Atkins SD, Clark IM, Sosnowska D, Hirsch PR, Kerry BR (2003) Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, Real-Time PCR, selective media, and baiting. Appl Environ Microbiol 69(8):4788–4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari R, Jones J (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Barrow JR (2003) A typical morphology of dark septate fungal root endophytes of Bouteloua in arid south western USA range lands. Mycorrhiza 13:239–247

    Article  CAS  PubMed  Google Scholar 

  • Barrow JR, Aaltonen RE (2001) Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11:199–205

    Article  Google Scholar 

  • Biswas C, Dey P, Karmakar PG, Satpathy S (2014) Next-generation sequencing and micro RNAs analysis reveal SA/ MeJA1/ ABA pathway genes mediated systemic acquired resistance (SAR) and its master regulation via production of phased, trans-acting siRNAs against stem rot pathogen Macrophomina phaseolina in RIL population of jute (Corchorus capsularis). Physiol Mol Plant Pathol 87:76–85

    Article  CAS  Google Scholar 

  • Brooker NL, Kuzimichev Y, Lass J, Pavlis R (2007) Evaluation of coumarin derivatives as anti fungal agents against soil borne fungal pathogens. Commun Agric Appl Biol Sci 72:785–793

    CAS  PubMed  Google Scholar 

  • Cartieaux F, Contesto C, Gallou A, Desbrosses G, Kopka J, Taconnat L, Renou JP, Touraine B (2008) Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. strain ors278 and Pseudomonas syringae pv. Tomato dc3000 leads to complex transcriptome changes. Mol Plant Microbe Interact 21:244–259

    Article  CAS  PubMed  Google Scholar 

  • Chaverri P, Salgado C, Hirooka Y, Rossman AY, Samuels GJ (2011) Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Stud Mycol 68:57–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves A, Burgess T, Barber P, Groenewald JL (2006) Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol 55:235–253

    Article  PubMed  PubMed Central  Google Scholar 

  • De Mooy CJ, Burke DW (1990) External infection mechanism of hypocotyls and cotyledons of cowpea seedling by Macrophomina phaseolina. Plant Dis 74:720

    Google Scholar 

  • De Vleesschauwer D, Yang Y, Cruz CV, Hofte M (2010) Abscisic acid-induced resistance against the brown spot pathogen Cochlibolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physol 154:2036–2052

    Article  Google Scholar 

  • Deshpande AN, Murumkar DR (2008) Effect of tillage practice and nutrient source on microorganism counts in the rhizosphere of winter sorghum (Sorgum bicolor). Indian J Agron Sci 78:470–472

    Google Scholar 

  • Dhingra OD, Sinclair JB (1973) Variation among isolates of Macrophomina phaseolina (Rhizoctonia bataticola) from different regions. J Phytopathol 76:200–204

    Article  Google Scholar 

  • Dhingra OD, Sinclair JB (1978) Biology and pathology of Macrophomina phaseolina. Imprensa Universitária, Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Fernandez RB, De Santiago A, Delgado SH, Perez NM (2006) Characterization of Mexican and non-Mexican isolates of Macrophomina phaseolina based on morphological characteristics, pathogenicity on bean seeds and endoglucanase gene. J Plant Pathol 88:1

    Google Scholar 

  • Fey BJ, Parker JE (2000) interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455

    Article  Google Scholar 

  • Gill MJ, Mauch-Mani B, Jorda L, Vera P (2005) The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid- mediated disease resistance and the methyl-erythriol-4-phosphate pathway. Plant J 44:155–166

    Article  Google Scholar 

  • Glazebrooki J (2005) Contrasting mechanism of defense against biotropic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  Google Scholar 

  • Hamer JE, Farral L, Orbach MJ, Valent B, Chumley FG (1989) Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc Natl Acad Sci U S A 86:9981–9985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard RJ (1997) Breaching the outer barriers: cuticle and cell wall penetration. In: Carroll GC, Tudzynski P (eds) Themycota. Plant relationships, vol 5, Part A. Springer, Berlin, pp 43–60

    Google Scholar 

  • Ilyas MB, Sinclair J (1974) Effects of plant age upon development of necrosis and occurrence of intraxylem sclerotiain soybean infected with Macrophomina phaseolina. Phytopathology 64:156–157

    Article  Google Scholar 

  • Jana TK, Sharma TR, Prasad RD, Arora DK (2003) Molecular characterization of Macrophomina phaseolina and Fusarium species by using single primer RAPD technique. Microbiol Res 158:249–257

    Article  CAS  PubMed  Google Scholar 

  • Jana T, Sharma TR, Singh NK (2005) SSR-based detection of genetic variability in the charcoal root rot pathogen Macrophomina phaseolina. Mycol Res 109(1):81–86

    Article  CAS  PubMed  Google Scholar 

  • Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Eur J Agron 31:144–152

    Article  CAS  Google Scholar 

  • Karunanithi K, Muthusamy M, Seetharaman K (1999) Cultural and pathogenic variability among the isolates of Macrophomina phaseolina causing root rot of sesame. Plant Dis 14:113–117

    Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plantpathogen interactions. Trends Plant Sci 14:373–382

    Article  CAS  PubMed  Google Scholar 

  • Khan SN (2007) Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopathology 5:111–118

    Google Scholar 

  • Khan MA, Gangopadhyay S (2008) Efficacy of Pseudomonas fluorescens in controlling root rot of chick pea caused by Macrophomina phaseolina. J Mycol Plant Pathol 38:580–587

    CAS  Google Scholar 

  • Knox-Davies PS (1967) Mitosis and aneuploidy in the vegetative hyphae of Macrophomina phaesoli. Am J Bot 54:1290–1295

    Article  Google Scholar 

  • Kulkarni NB, Patil BC (1966) Taxonomy and discussion on the nomenclature of Macrophomina phaseoli (Maubl.) ashby and its isolates from India. Mycopathology 28:257–264

    Google Scholar 

  • Kunwar IK, Singh T, Machado CC, Sinclair JB (1986) Histopathology of Soybean seed and seedling infection by Macrophomina phaseolina. Phytopathology 76:532–535

    Article  Google Scholar 

  • La Camera S, Balague C, Gobel C, Geoffroy P, Legrand M, Feussner I (2009) The Arabidopsis paratin-like protein 2(PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol Plant Microbe Interact 22:469–481

    Article  PubMed  Google Scholar 

  • Lee MW, Jelenska J, Greenberg JT (2008) Arabidopsis protein important for modulating defense response to Pseudomonas syringe HopW1-1. Plant J 54:452–465

    Article  CAS  PubMed  Google Scholar 

  • Loganathan M, Sible GV, Maruthasalam S, Saravanakumar D, Raguchander T, Sivakumar R, Samiyappan R (2010) Trichoderma and chitin mixture based bioformulation for the management of head rot (Sclerotinia sclerotiorum (Lip.) deBary)-root knot (Meloidogyne incognita Kofoid and White) chitwood complex disease of cabbage. Arch Phytopathol Plant Proc 43:1011–1024

    Article  CAS  Google Scholar 

  • Mayek-Perez N, Gracia-Espiosa R, Lopez-Castaneda C, Acosta-Gallegis JA, Simpson J (2002) Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiol Mol Plant Pathol 60:185–195

    Article  Google Scholar 

  • Mengistu A, Ray JD, Smith JR, Paris RL (2007) Charcoal rot disease assessment of soybean genotypes using a colony forming unit index. Crop Sci 47:2453–2456

    Article  Google Scholar 

  • Mengistu A, Smith JR, Ray JD (2011) Seasonal progress of charcoal rot and its impact on soybean productivity. Plant Dis 95:1159–1166

    Article  Google Scholar 

  • Meyer WA, Sinclair JB, Khare MN (1974) Factors affecting charcoal rot of soybean seedlings. Phytopathology 64:845–849

    Article  Google Scholar 

  • Miao VP, Covertand SF, Vanetten HD (1991) Fungal gene for antibiotic resistance on a dispensable (‘B’) chromosome. Science 254:1773–1776

    Article  CAS  PubMed  Google Scholar 

  • Mihail JD (1992) Macrophomina. In: Singleton LS, Mihail JD, Rush CM (eds) Methods for research on soil-borne phytopathogenic fungi. Am Phytopathol Soc Press, St. Paul, pp 134

    Google Scholar 

  • Mihail JD, Taylor ST (1995) Interpreting variability among isolates of Macrophomina phaseolina in pathogenicity, pycnidium production and chlorate utilization. Can J Bot 73:1596–1603

    Article  Google Scholar 

  • Mondal SN, Hyakumachi M (1998) Carbon loss and germinability of chlamydospores of Fusarium solani f. sp. phaseoli after exposure to soil at different pH levels, temperatures and matric potentials. Phytopathology 88:148–155

    Article  CAS  PubMed  Google Scholar 

  • Money NP, Frederick B, Henson JM (1998) Melanin synthesis is associated with changes in hyphopodial turgor, permeability, and wall rigidity in Gaeumannomycesg raminis var. graminis. Fungal Genet Biol 24:240–251

    Article  CAS  PubMed  Google Scholar 

  • Olaya G, Abawi GS, Barnard J (1996) Influence of water potential on survival of sclerotia in soil and on colonization of bean stem segments by Macrophomina phaseolina. Plant Dis 80:1351–1354

    Article  Google Scholar 

  • Papavizas GC, Klag NG (1975) Isolation and quantitative determination of Macrophomina phaseolina from soil. Phytopathology 65:182–187

    Article  Google Scholar 

  • Patil VB, Kamble SS (2011) The influence of ultraviolet light on antagonistic activity of Trichoderma koningii against Macrophomina phaseolina causing charcoal rot of Charcoal rot on sunflower 5 sweet potato. Int J Acad Res 3:702–704

    Google Scholar 

  • Pearson CAS, Schwenk FW, Crowe FJ, Kelly K (1984) Colonization of soybean roots by Macrophomina phaseolina. Plant Dis 68:1086–1088

    Article  Google Scholar 

  • Pearson CAS, Leslie JF, Schwenk FW (1987) Host preference correlated with chlorate resistance in Macrophomina phaseolina. Plant Dis 71:828–831

    Article  Google Scholar 

  • Pecina V, Alvarado MJ, Alanis HW, Almaraz RT, Vandemark GJ (2000) Detection of double-stranded RNA in Macrophomina phaseolina. Mycologia 92:900–907

    Article  CAS  Google Scholar 

  • Pedgaonkar SM, Mayee CD (1990) Stalk water potential in relation to charcoal rot of Sorghum. Indian Phytopathol 43:192–196

    Google Scholar 

  • Perez-Brandán C, Arzeno JL, Huidobro J, Grümberg B, Conforto C, Hilton S, Bending GD, Meriles JM, Vargas-Gil S (2012) Long-term effect of tillage systems on soil microbiological, chemical and physical parameters and the incidence of charcoal rot by Macrophomina phaseolina (Tassi)Goid in soybean. Crop Prot 40:73–82

    Article  Google Scholar 

  • Powell NT (1971) Interactions between nematodes and fungi in disease complexes. Annu Rev Phytopathol 9:253–274

    Article  Google Scholar 

  • Punithalingam E (1983) The nuclei of Macrophomina phaseolina (Tassi) Goid. Nova Hedwig 38:339–367

    Google Scholar 

  • Purkayastha S, Kaur B, Dilbaghi N, Chaudhury A (2006) Characterization of Macrophomina phaseolina, the charcoal rot pathogen of cluster bean, using conventional techniques and PCRbased molecular markers. Plant Pathol 55:106–116

    Article  CAS  Google Scholar 

  • Ramezani M, Shier WT, Abbas HK, Tonos JL, Baird RE, Sciumbato GL (2007) Soybean charcoal rot disease fungus Macrophomina phaseolina in Mississippi produces the phytotoxin (–)-botryodiplodin but no detectable phaseolinone. J Nat Prod 70:128–129

    Article  CAS  PubMed  Google Scholar 

  • Reuveni R, Nachmias A, Krikun J (1983) The role of seedborne inoculum on the development of Macrophomina phaseolina on melon. Plant Dis 67:280–281

    Article  Google Scholar 

  • Ross JP (1965) Predispositions of soybeans to Fusarium wilt by Heterodera glycines and Meloidogyne incognita. Phytopathology 55:361–364

    Google Scholar 

  • Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis related (PR) proteins: a focus on PR peptide. Plant Physiology and Biochemistry 46(11):941–950

    Google Scholar 

  • Shahda WT, Tarabeih AM, Michail SH, Hemeda AAH (1991) Fungi associated with sunflower seeds in Egypt with reference to chemical control measures. J King Saud Univ Agric Sci 3:287–293

    Google Scholar 

  • Short GE, Wyllie TD, Ammon VD (1978) Quantitative enumeration of Macrophomina phaseolina in soybean tissues. Phytopathology 68:736–741

    Article  Google Scholar 

  • Sinclair JB (1982) Compendium of Soybean disease. 2nd ed. by American Phytopathology Society, St. Paul, Minnesota, USA.

    Google Scholar 

  • Sinclair JB (1989) Vegetable oil thermotherapy for soybean seeds. In: Raychaudhri SP, Verma JP (eds) Review of tropical plant pathology: diseases of fiber and oilseed crops, vol 5. Today and Tomorrow’s Printers and Publishers, New Delhi

    Google Scholar 

  • Sinclair JB, Backman PA (1989) In: Sinclair JB, Backman PA (eds) Compendium of soybean diseases, 3rd edn. APS Press, St. Paul, p 106, Am Phytopathol Soc, EE. UU

    Google Scholar 

  • Smith GS, Carvil ON (1997) Field screening of commercial and experimental soybean cultivars for their reaction to Macrophomina phaseolina. Plant Dis 81:363–368

    Article  Google Scholar 

  • Smith GS, Wyllie TD (1999) Charcoal rot. In: Hartman GL, Sinclair JB, Rupe JC (eds) Compendium of soybean disease, 4th edn. American Phytopathological Society, St. Paul, pp 29–31

    Google Scholar 

  • Solomon PS, Wilson TJG, Rybak K, Parker K, Lowe RGT, Oliver RP (2006) Structural characterization of the interaction between Triticum aestivum and the dothideomycete pathogen Stagono sporanodorum. Eur J Plant Pathol 114:275–282

    Article  Google Scholar 

  • Suriandraselvan M, Salalrajan F, Aiyyanathan KEA (2006) Relationship between morphological variations and virulence in the isolates of Macrophomina phaseolina causing charcoal rot of sunflower. Madras Agric J 93(1–6):63–67.

    Google Scholar 

  • Sundaravadana S (2002) Management of blackgram (Vigna mungo (L.) Hepper) root rot Macrophomina phaseolina (Tassi) Goid with bioagents and nutrients. M. Sc. (Ag.) Thesis, Tamil Nadu Agriculture University, Coimbatore

    Google Scholar 

  • Tesso TT, Claflin LE, Tuinstra MR (2005) Analyses of stalk rot resistance and genetic diversity among drought tolerant sorghum genotypes. Crop Sci 45:645–652

    Article  CAS  Google Scholar 

  • Thilgavathi R, Saravanakumar D, Ragupathy N, Samiyappan R (2007) Integration of biocontrol agents for the management of dry root rot (Macrophomina phaseolina) disease in greengram. Phytopathol Mediterr 46:157–167

    Google Scholar 

  • Van Bruggen AHC, Semenov AM, Van Diepeningen AD, de Vos OJ, Blok WJ (2006) Relation between soil health, wave-like fluctuations in microbial populations, and soil-borne plant disease management. Eur J Plant Pathol 115:105–122

    Article  Google Scholar 

  • Vargas Gil S, Pedelini R, Oddino C, Zuza M, Marinelli A, March GJ (2008) The role of potential biocontrol agents in the management of peanut root rot in Argentina. J Plant Pathol 90:35–41

    Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong XN (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  CAS  PubMed  Google Scholar 

  • Wantanabe T, Smith RS, Snyder WC (1970) Population of Macrophomina phaseoli [sic] in soil as affected by fumigation and cropping. Phytopathology 60:1717–1719

    Article  Google Scholar 

  • Wiese J, Kranz T, Schubert S (2004) Induction of pathogen resistance in barley by abiotic stress. Plant Biol 6:529–536

    Article  CAS  PubMed  Google Scholar 

  • Wrather JA, Anderson TR, Arsyad DM, Gai J, Ploper LD, Porta-Puglia A, Ram HH, Yorinori JT (1997) Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Dis 81:107–110

    Article  Google Scholar 

  • Wrather JA, Anderson TR, Arsyad DM, Tan Y, Ploper LD, Porta-Puglia A, Ram HH, Yorinori JT (2001) Soybean disease loss estimates for the top 10 soybean producing countries in 1998. Can J Plant Pathol 23:115–121

    Article  Google Scholar 

  • Wyllie TD (1988) Charcoal rot of soybeans-current status. In: Wyllie TD, Scott DH (eds) Soybean diseases of the North Central Region. APS Press, St. Paul, pp 106–113

    Google Scholar 

  • Wyllie TD (1989) Charcoal rot. In: Sinclair JB, Backman PA (eds) Compendium of soybean diseases, 3rd edn. APS Press, St. Paul, p 30

    Google Scholar 

  • Xiaojian L, Liu LI, Baidnun O, Derong Z (1988) Geographical distribution of sunflower diseases in China. In: Proc 12th Int Sunfl Conf Novi Sad, Serbia, pp 16–20

    Google Scholar 

  • Zander M, La Camera S, Lamorte O, Metraux JP, Gatz C (2010) Arabdiopsis thaliana class II TGA transcription factors are essential activator of jasmonic acid/ethylene-induced defense response. Plant J 61:200–210

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vibha (2016). Macrophomina phaseolina: The Most Destructive Soybean Fungal Pathogen of Global Concern. In: Kumar, P., Gupta, V., Tiwari, A., Kamle, M. (eds) Current Trends in Plant Disease Diagnostics and Management Practices. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27312-9_8

Download citation

Publish with us

Policies and ethics