Skip to main content

Physiological and Molecular Signalling Involved in Disease Management Through Trichoderma: An Effective Biocontrol Paradigm

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Biological control or biocontrol is the use of specific microorganisms that interfere with plant pathogens and pests, and sustain organisms useful to human. It is a nature-friendly, ecological approach to overcome the problems caused by standard chemical methods of plant protection which drastically affect the environment as well as consumer. Trichoderma, a member of ascomycota was first described by Pearson (1794) and its beneficial activities as a biocontrol agent (BCA) has been known since 1930 and since then there have been extensive efforts to use them for plant disease control. Trichoderma species play an important role in controlling fungal plant pathogens, especially the soil borne pathogens, by competing for nutrients and space, producing cell wall degrading enzymes (CWDE) or through mycoparasitism (the direct attack of one fungus on another). They are not only fungal parasites but can also produce antibiotics. These processes such as the production of antifungal metabolites and hydrolytic enzymes are mediated by G-proteins and mitogen activated protein (MAP) kinases. In addition, certain strains can release a variety of compounds that induce systemic and localized resistance response in host plant, mediated by alteration in plant gene expression. This Trichoderma mediated induced systemic resistance (ISR) is regulated by various plant hormones like jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), gibberellic acid (GA) and salicylic acid (SA). Among them, JA, ET and SA are the central players in defence signalling. Thus, Trichoderma encompasses different mechanisms to achieve effective disease control against a variety of plant pathogens by means of various signalling components and pathways. Another approach for improving resistance against pathogens is to express genes of Trichoderma in plants, through genetic manipulation. Recently, there has been increasing attempt in development of transgenic plants using genes from Trichoderma spp. which are responsible for biocontrol activity. Besides protecting against biotic stress, root-colonization with Trichoderma also enhances growth and productivity of host plant by improving nutrient and water uptake. Due to the effective control of plant pathogens/diseases and improvement of plant growth, several Trichoderma bioproducts are now available commercially. However, much work still needs to be done to explore its full potential for improving plant growth and managing plant diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aerts R, De Schutter B, Rombouts L (2002) Suppression of Pythium spp. by Trichoderma spp. during germination of tomato seeds in soilless growing media. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 67(2):343–351

    Google Scholar 

  • Agarwal T, Malhotra A, Biyani M, Trivedi PC (2011) In vitro interaction of Trichoderma isolates against Aspergillus niger, Chaetomium sp. and Penicilium sp. Ind J Fundam Appl Life Sci 1(3):125–128

    Google Scholar 

  • Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crop Prod 55:202–206

    Article  CAS  Google Scholar 

  • Ajith PS, Lakshmidevi N (2010) Effect of volatile and non-volatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on bell peppers. Nat Sci 8(9):265–269

    Google Scholar 

  • Amer MA, Abou-El-Seoud (2008) Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani damping-off disease of tomato. Commun Agric Appl Biol Sci 73(2):217–232

    CAS  PubMed  Google Scholar 

  • Amin M, Teshele J, Tesfay A (2014) Evaluation of bioagents seed treatment against Colletotrichum Lindemuthianum, in haricot bean anthracnose under field condition. Res Plant Sci 2(1):22–26

    Google Scholar 

  • Anitha A, Das MA (2011) Activation of rice plant growth against Rhizoctonia solani using Pseudomonas fluorescens, Trichoderma and salicylic acid. Res Biotechnol 2(4):7–12

    Google Scholar 

  • Asad SA, Ali N, Hameed A, Khan SA, Ahmad R, Bilal M, Shahzad M, Tabassum A (2014) Biocontrol efficacy of different isolates of Trichoderma against soil borne pathogen Rhizoctonia solani. Pol J Microbiol 63(1):95–103

    PubMed  Google Scholar 

  • Awuah RT, Lorbeer JW (1991) Methyl bromide and steam treatment of an organic soil for control of Fusarium yellows of celery. Plant Dis 75:123–125

    Article  CAS  Google Scholar 

  • Backman PA, Rodriguez-Kabana R (1975) A system for the growth and delivery of biological control agents to the soil. Phytopathology 65:819–821

    Article  Google Scholar 

  • Bacon CW, Hinton DM, Hinton J (2006) Growth-inhibiting effects of concentrations of fusaric acid on the growth of Bacillus mojavensis and other biocontrol Bacillus species. J Appl Microbiol 100:185–194

    Article  CAS  PubMed  Google Scholar 

  • Bailey BA, Lumsden RD (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In: Kubicek CP, Harman GE, Ondik KL (eds) Trichoderma and Gliocladium: enzymes, biological control and commercial applications. Taylor and Francis, London, pp 185–204

    Google Scholar 

  • Barakat RM, Al-Mahareeq F, Ali -Shtayeh MS, AL- Masri M (2007) Biological control of Rhizoctonia solani by indigenous Trichoderma spp. isolates from Palestine. Hebron Univ Res J 3:1–15

    Google Scholar 

  • Basak AC, Basak SR (2011) Biological control of Fusarium solani sp. dalbergiae, the wilt pathogen of Dalbergia sissoo, by Trichoderma viride and T. harzianum. J Trop For Sci 23(4):460–466

    Google Scholar 

  • Batta YA (2004) Effect of treatment with Trichoderma harzianum Rifai formulated in invert emulsion on postharvest decay of apple blue mold. Int J Food Microbiol 96:281–288

    Article  CAS  PubMed  Google Scholar 

  • Bendahmane BS, Mahiout D, Benzohra IE, Benkada MY (2012) Antagonism of Three Trichoderma species against Botrytis fabae and B. cinerea, the causal agents of chocolate spot of faba bean (Vicia faba L.). In Algeria. World Appl Sci J 17(3):278–283

    Google Scholar 

  • Bernal-Vicente A, Ros M, Pascual JA (2009) Increased effectiveness of the Trichoderma harzianum isolate T-78 against Fusarium wilt on melon plants under nursery conditions. J Sci Food Agr 89:827–833

    Article  CAS  Google Scholar 

  • Bhagat S, Bambawale OM, Tripathi AK, Ahmad I, Srivastava RC (2013) Biological management of fusarial wilt of tomato by Trichoderma spp. in Andamans Indian. J Hortic 70(3):397–403

    Google Scholar 

  • Bogumił A, Paszt LS, Lisek A, Trzciński P, Harbuzov A (2013) Identification of new Trichoderma strains with antagonistic activity against Botrytis cinerea. Folia Hortic 25(2):123–132

    Article  Google Scholar 

  • Bölker M (1998) Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 25(3):143–156

    Article  PubMed  Google Scholar 

  • Brunner K, Omann M, Pucher ME, Delic M, Lehner SM, Domnanich P, Kratochwill K, Druzhinina I, Denk D, Zeilinger S (2008) Trichoderma G protein coupled receptors: functional characterisation of a cAMP receptor like protein from Trichoderma atroviride. Curr Genet 54(6):283–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheeke PR (1995) Endogenous toxins and mycotoxins in forage grasses and their effects on livestock. J Anim Sci 73:909–918

    CAS  PubMed  Google Scholar 

  • Cheng CH, Yang CA, Peng KC (2012) Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Phytopathology 2(11):1054–1063

    Article  CAS  Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The Mycota IV: environmental and microbial relationships. Springer, Berlin, pp 165–184

    Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrenes of Trichoderma harzianum. Trans Br Mycol Soc 88:503–513

    Article  CAS  Google Scholar 

  • Coley-Smith JR, Ghaffar A, Javed ZUR (1974) The effect of dry conditions on subsequent leakage and rotting of fungal sclerotia. Soil Biol Biochem 6:307–312

    Article  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dababat AFA, Sikora RA (2007) Use of Trichoderma harzianum and Trichoderma viride for the biological control of Meloidogyne incognita on tomato. Jordan J Agric Sci 3(3):297–309

    Google Scholar 

  • Dal Bello GM, Mónaco CI, Cháves AR (1997) Study of the effect of volatile metabolites of Trichoderma hamatum on the growth of phytopathogenic soil borne fungi. Rev Iberoam Micol 14(3):131–134

    CAS  PubMed  Google Scholar 

  • Delgado-Jarana J, Moreno-Mateos MA, Benítez T (2003) Glucose uptake in Trichoderma harzianum: role of gtt1. Eukaryot Cell 2:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirci E, Dane E, Eken C (2011) In vitro antagonistic activity of fungi isolated from sclerotia on potato tubers against Rhizoctonia solani. Turk J Biol 35:457–462

    Google Scholar 

  • Deshmukh AJ, Mehta BP, Patil VA (2010) In-vitro evaluation of some known bioagents to control C. gloeosporioides Penz, and Sacc, causing Anthracnose of Indian bean. Int J Pharm Biol Sci 1(2):1–6

    Google Scholar 

  • Díaz BA, Vila AR (1990) Biological control of Penicillium digitatum by Trichoderma viride on postharvest citrus fruits. Int J Food Microbiol 11(2):179–183

    Article  Google Scholar 

  • Dolatabadi HK, Goltapeh EM, Mohammadi N, Rabiey M, Rohani N, Varma A (2012) Biocontrol potential of root endophytic fungi and Trichoderma species against Fusarium wilt of lentil under in vitro and greenhouse conditions. J Agric Sci Technol 14(407–420):407

    Google Scholar 

  • D’Souza CA, Heitman J (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25:349–364

    Article  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Eapen SJ, Beena B, Ramana KV (2005) Tropical soil microflora of spice-based cropping systems as potential antagonists of root-knot nematodes. J Invertebr Pathol 88:218–225

    Article  PubMed  Google Scholar 

  • Elad Y (1994) Biological control of grape grey mould by Trichoderma harzianum. Crop Prot 13:35–38

    Article  Google Scholar 

  • Elad Y, Chet I, Katan J (1980) Trichoderma harzianum: a biocontrol agent effective against Sclerotium rolfsii and Rhizocionia solani. Phytopathology 70:119–121

    Article  Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725

    Article  CAS  Google Scholar 

  • Elad Y, Köhl J, Fokkema NJ (1994) Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophitic bacteria and fungi. Eur J Plant Pathol 100:315–336

    Article  Google Scholar 

  • El-Hasan A, Walker F, Buchenauer H (2008) Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme. J Phytopathol 156:79–87

    Article  CAS  Google Scholar 

  • El-Naggar M, Kövics GJ, Sándor E, Irinyi L (2008) Mycoparasitism and antagonistic efficiency of Trichoderma reesei against Botrytis spp. Contrib Bot 43:141–147

    Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Ozaki K, Hyakumachi M (2013) Induction of systemic resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathol J 29(2):193–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Fakhrunnisa, Hashmi MH, Ghaffar A (2006) In vitro interaction of Fusarium spp., with their fungi. Pak J Bot 38(4):1317–1322

    Google Scholar 

  • Firmino AAP, Ulhoa CJ, Sousa MV, Filho EXF, Ricart CAO (2002) Involvement of G proteins and camp in the production of chitinolytic enzymes by Trichoderma harzianum. Braz J Microbiol 33(2):169–173

    Article  CAS  Google Scholar 

  • Fiume F, Fiume G (2006) Biological control of Botrytis gray mould on tomato cultivated in greenhouse. Commun Agric Appl Biol Sci 71:897–908

    CAS  PubMed  Google Scholar 

  • Flores A, Chet I, Herrera-Estrella A (1997) Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. Curr Genet 31:30–37

    Article  CAS  PubMed  Google Scholar 

  • Freeman S, Barbul O, Rav David D, Nitzani Y, Zveibil A, Elad Y (2001) Trichoderma spp. for biocontrol of Colletotrichum acutatum and Botrytis cinerea in strawberry. Biocontrol of fungal and bacterial plant pathogens. IOBC/WPRS Bull 24:147–150

    Google Scholar 

  • Freeman S, Minz D, Kolesnik I, Barbul O, Zveibil A, Maymon M, Nitzani Y, Kirshner B, Rav-David D, Bilu A, Dag A, Shafir S, Elad Y (2004) Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur J Plant Pathol 110:361–370

    Article  CAS  Google Scholar 

  • Friedl MA, Druzhinina IS (2012) Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development. Microbiology 158:69–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gachomo EW, Kotchoni SO (2008) The use of Trichoderma harzianum and T. viride as potential biocontrol agents against peanut microflora and their effectiveness in reducing aflatoxin contamination of infected kernel. Biotechnol J 7:439–447

    Article  Google Scholar 

  • Gemishev OT, Vaseva II, Atev AP (2005) Abscisic acid and ethylene influence on endo-1,4-b glucanase activity in Trichoderma reesei I-27. Biotechnol Biotechnol Equip 19(3):106–112

    Article  CAS  Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D, Aviles W, Vila SB, Van Montagu M, Herrera-Estrella A (1993) Molecular characterization of the proteinase encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    Article  CAS  PubMed  Google Scholar 

  • Ghosh SK, Chakraborty N (2012) In vitro biological control of Colletotrichum gloeosporioides, causal organism of anthracnose of sarpagandha (Roulvolfia serpentina). Agric Biol J N Am 3(8):306–310

    Article  Google Scholar 

  • Gruber S, Omann M, Zeilinger S (2013) Comparative analysis of the repertoire of G protein-coupled receptors of three species of the fungal genus Trichoderma. BMC Microbiol 13:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  Google Scholar 

  • Hassanein NM (2012) Biopotential of some Trichoderma spp. against cotton root rot pathogens and profiles of some of their metabolites. Afr J Microbiol Res 6(23):4878–4890

    CAS  Google Scholar 

  • Henis Y, Adams PB, Papavizas GC, Lewis JA (1982) Penetration of sclerotia of Sclerotium rolfsii by Trichoderma spp. Phytophathology 72:70–74

    Google Scholar 

  • Herrera-Estrella A, Chet I (2003) In: Arora D (ed) Handbook of fungal biotechnology. Dekker, New York, in press

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Inbar J, Menendez A, Chet I (1996) Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biol Biochem 28:757–763

    Article  CAS  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    Article  CAS  PubMed  Google Scholar 

  • Jat JG, Agalave HR (2013) Antagonistic properties of Trichoderma species against oilseed-borne fungi. Sci Res Rep 3(2):171–174

    Google Scholar 

  • Jeyaseelan EC, Tharmila S, Niranjan K (2012) Antagonistic activity of Trichoderma spp. and Bacillus spp. against Pythium aphanidermatum isolated from tomato damping off. Arch Appl Sci Res 4(4):1623–1627

    Google Scholar 

  • John RP, Tyagi RD, Prevost D, Brar SK, Pouleur S, Surampalli RY (2010) Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot 29(12):1452–1459

    Article  Google Scholar 

  • Kamala T, Indira S (2011) Evaluation of indigenous Trichoderma isolates from Manipur as biocontrol agent against Pythium aphanidermatum on common beans. Biotechnology 1:217–225

    Google Scholar 

  • Kataoka R, Yokota K, Goto I (2010) Biocontrol of yellow disease of Brassica compestris caused by Fusarium oxysporum with Trichoderma viridae under field conditions. Arch Phytopathol Plant Protect 43:900–909

    Article  Google Scholar 

  • Khethr FBH, Ammar S, Saïdana D, Daami M, Chriaa J, Liouane K, Mahjoub MA, Helal AN, Mighri Z (2008) Chemical composition, antibacterial and antifungal activities of Trichoderma sp. growing in Tunisia. Ann Microbiol 58(2):303–308

    Article  CAS  Google Scholar 

  • Korolev N, Rav David D, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. Biocontrol 53:667–683

    Article  CAS  Google Scholar 

  • Kuc J (1982) Induced immunity to plant disease. Bioscience 32:854–860

    Article  Google Scholar 

  • Kumakura K, Watanabe S, Toyoshima J, Makino T, Iyozumi H, Ichikawa T, Nagayama K (2003) Effect of Trichoderma sp. SKT-1on suppression of six different seed borne diseases of rice. Jpn J Phytopathol 69:384–392

    Article  Google Scholar 

  • Kumar V, Shahid M, Srivastava M, Singh A, Pandey S, Sharma A, Srivastava YK (2014) Antagonistic effect of rhizospheric Trichoderma species against soil borne pathogens. J Program Res 9:408–410

    Google Scholar 

  • Kumar V, Shahid M, Srivastava M, Singh A, Pandey S, Maurya MK (2015) Screening of Trichoderma species for virulence efficacy on seven most predominant phytopathogens. Afr J Microbiol Res 9(11):793–799

    Article  Google Scholar 

  • Kushwaha M, Verma AK (2014) Antagonistic activity of Trichoderma spp., (a biocontrol agent) against isolated and identified plant pathogens. Int J Chem Biol Sci 1:1–6

    Google Scholar 

  • Leelavathi MS, Vani L, Reena P (2014) Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. Int J Curr Microbiol Appl Sci 3(1):96–103

    Google Scholar 

  • Liju AC, Karthikeyan A, Siva Priya NB, Siddiqui S (2014) Control of anthracnose disease in Swietenia macrophylla usingTrichoderma virideas biocontrol agent. Plant Pathol 13:173–176

    Article  Google Scholar 

  • Lorito M, Peterbauer C, Hayes CK, Harman GE (1994) Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140:623–629

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Zhang DD, Dong XW, Zhao PB, Chen LL, Song XY, Wang XJ, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313(2):120–126

    Article  CAS  PubMed  Google Scholar 

  • Manczinger L, Molnar A, Kredics L, Antal Z (2002) Production of bacteriolytic enzymes by mycoparasitic Trichoderma strains. World J Microbiol Biotechnol 18:147–150

    Article  CAS  Google Scholar 

  • Martínez-Álvarez P, Alves-Santos FM, Diez JJ (2012) In vitro and in vivo interactions between Trichoderma viride and Fusarium circinatum. Silva Fenn 46(3):303–316

    Article  Google Scholar 

  • Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ (2013) Deciphering the hormonal signaling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Marzano M, Gallo A, Altomare C (2013) Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid. Biol Control 67:397–408

    Article  CAS  Google Scholar 

  • Mascarin GM, Bonfim Junior MF, de Araújo Filho JV (2012) Trichoderma harzianum reduces population of Meloidogyne incognita in cucumber plants under greenhouse conditions. J Entomol Nematol 4(6):54–57

    Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G (2012) Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 158:98–106

    Article  CAS  PubMed  Google Scholar 

  • Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Matloob AH, Juber K (2013) Biological control of bean root rot disease caused by Rhizoctonia solani under green house and field conditions. Agric Biol J N Am 4(5):512–519

    Google Scholar 

  • Mbarga JB, Hoopen GMT, Kuaté J, Adiobo A, Ngonkeu MEL, Ambang Z, Akoa A, Tondje PR, Begoude BAD (2012) Trichoderma asperellum: a potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon. Crop Prot 36:18–22

    Article  Google Scholar 

  • Meca G, Soriano JM, Gaspari A, Ritieni A, Moretti A, Manes J (2010) Antifungal effects of the bioactive compounds enniatins A, A1, B, B1. Toxicon 56:480–485

    Article  CAS  PubMed  Google Scholar 

  • Melo ID, Faull JL (2000) Parasitism of Rhizoctonia solani by strains of Trichoderma spp. Sci Agric 57:55–59

    Article  Google Scholar 

  • Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martínez P, García JM, Olmedo-Monfil V, Cortés C, Kenerley C, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 100(26):15965–15970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meraj-ul-Haque, Nandkar PB (2012) Antagonistic effect of rhizospheric Trichoderma isolates against tomato damping-off pathogen, Fusarium oxysporum f.sp. lycopersici. Int J Res Biosci 1(2):27–31

    Google Scholar 

  • Miller JD (1994) Epidemiology of Fusarium graminearum diseases of wheat and corn. In: Miller JD, Trenholm HL (eds) Mycotoxins in grain: compounds other than aflatoxin. Eagan Press, St. Paul, pp 19–36

    Google Scholar 

  • Montealegre J, Valderrama L, Sánchez S, Herrera R, Besoain X, María Pérez L (2010) Biological control of Rhizoctonia solani in tomatoes with Trichoderma harzianum mutants. Electron J Biotechnol 13(2):1–11

    Google Scholar 

  • Monteiro VN, Steindorff AS, Almeida FBR, Lopes FAC, Ulhoa CJ, Félix CR, Silva RN (2015) Trichoderma reesei mycoparasitism against Pythium ultimum is coordinated by G-alpha protein GNA1 signaling. J Microb Biochem Technol 7:1–7

    Google Scholar 

  • Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, Nicolás C (2012) Transcriptomic response of Arabidopsis thaliana after 24h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169:614–620

    Article  PubMed  CAS  Google Scholar 

  • Moretto KCK, Gimenes-Fernandes N, Dos Santos JM (2001) Influence of Trichoderma spp. on Colletotrichum acutatum mycelial growth and morphology on infection of ‘Tahiti’ lime detached flowers. Summa Phytopathol 27(4):357–364

    Google Scholar 

  • Morsy EM, Abdel-Kawi KA, Khalil MNA (2009) Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against Fusarium solani on tomato plants. Egypt J Phytopathol 37(1):47–57

    Google Scholar 

  • Mukherjee PK, Raghu K (1997) Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium-rolfsii. Mycopathologia 139(3):151–155

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz BA (2003) TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot Cell 2(3):446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz BA (2004) Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens. Appl Environ Microbiol 70:542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee M, Mukherjee PK, Kale SP (2007) cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153:1734–1742

    Article  CAS  PubMed  Google Scholar 

  • Muriungi JS, Mutitu EW, Siboe MG (2013) Biocontrol of Fusarium root rot in beans by antagonistic Trichoderma fungi. Int J Agric Sci 3(7):550–557

    Google Scholar 

  • Muthukumar A, Eswaran A, Sanjeevkumas K (2011) Exploitation of Trichoderma species on the growth of Pythium Aphanidermatum in Chilli. Braz J Microbiol 42(4):1598–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento SR, Steindorff AS, Ulhoa CJ, Félix CR (2009) Involvement of G-alpha protein GNA3 in production of cell wall-degrading enzymes by Trichoderma reesei (Hypocrea jecorina) during mycoparasitism against Pythium ultimum. Biotechnol Lett 31:531–536

    Article  CAS  Google Scholar 

  • Naseby DC, Pascual JA, Lynch JM (2000) Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. J Appl Microbiol 88(1):161–169

    Article  CAS  PubMed  Google Scholar 

  • Naserinasab F, Sahebani N, Etebarian HR (2011) Biological control of Meloidogyne javanica by Trichoderma harzianum BI and salicylic acid on tomato. Afr J Food Sci 5(3):276–280

    Google Scholar 

  • Neer EJ (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80(2):249–257

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SL, Larsen J (2004) Two Trichoderma harzianum-based bio-control agents reduce tomato root infection with Spongospora subterranea (Wallr.) Lagerh., f. sp. subterranea, the vector of Potato mop-top virus. J Plant Dis Protect 111(2):145–150

    Article  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Omann M, Zeilinger S (2010) How a mycoparasite employs g-protein signaling: using the example of Trichoderma. J Signal Transduct 123126. doi:10.1155/2010/123126

    Google Scholar 

  • Omero C, Inbar J, Rocha-Ramirez V, Herrera-Estrella A, Chet I, Horwitz BA (1999) G protein activators and cAMP promote mycoparasitic behaviour in Trichoderma harzianum. Mycol Res 103:1637–1642

    Article  CAS  Google Scholar 

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. The Plant Health Instructor. 2:1117–1142

    Google Scholar 

  • Pandey KK, Uapadhyay JP (1997) Selection of potential biocontrol agents based on production of volatile and non volatile antibiotics. Veg Sci 24(2):140–143

    Google Scholar 

  • Patale SS, Mukadam DS (2011) Management of plant pathogenic fungi by using Trichoderma species. Biosci Discov 2(1):36–37

    Google Scholar 

  • Patil A, Laddha A, Lunge A, Paikrao H, Mahure S (2012) In vitro antagonistic properties of selected Trichoderma species against tomato root rot causing Pythium species. Int J Environ Sci Techniol 1(4):302–315

    Google Scholar 

  • Persoon CH (1794) Disposita methodical fungorum. Römers Neues Mag Bot 1:81–128.

    Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology 158:58–68

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Poosapati S, Ravulapalli PD, Tippirishetty N, Vishwanathaswamy DK, Chunduri S (2014) Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. SpringerPlus 3:641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahman MA, Razvy MA, Alam MF (2013) Antagonistic activities of Trichoderma strains against chili anthracnose pathogen. Int J Microbiol Mycol 1(1):7–22

    Google Scholar 

  • Rajathilagam R, Kannabiran B (2001) Antagonistic effects of Trichoderma viride against anthracnose fungus Colletotrichum capsici. Indian Phytopathol 54(1):135–136

    Google Scholar 

  • Rajendiran R, Jegadeeshkumar D, Sureshkumar BT, Nisha T (2010) In vitro assessment of antagonistic activity of Trichoderma viride against post harvest pathogens. J Agric Technol 6(1):31–35

    Google Scholar 

  • Rajeswari P, Kannabiran B (2011) In vitro effects of antagonistic microorganisms on Fusarium oxysporum (Schlecht. Emend. Synd & Hans) infecting Arachis hypogaea L. J Phytology 3(3):83–85

    Google Scholar 

  • Rao MS, Reddy PP, Nagesh M (1998) Evaluation of plant based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on egg plant. Nematol Mediterr 26:59–62

    Google Scholar 

  • Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760

    Article  CAS  PubMed  Google Scholar 

  • Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha-Ramirez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A (2002) Trichoderma atroviride G-protein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha-Ramírez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A (2002) Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Román E, Arana DM, Nombela C, Alonso-Monge R, Pla J (2007) MAP kinase pathways as regulators of fungal virulence. Trends Microbiol 15:181–190

    Article  PubMed  CAS  Google Scholar 

  • Ru Z, Di W (2012) Trichoderma spp. from rhizosphere soil and their antagonism against Fusarium sambucinum. Afr J Biotechnol 11(18):4180–4186

    Google Scholar 

  • Sahebani N, Hadavi N (2008) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem 40:2016–2020

    Article  CAS  Google Scholar 

  • Saloheimo M, Pakula TM (2012) The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology 158:46–57

    Article  CAS  PubMed  Google Scholar 

  • Sarma BK, Yadav SK, Patel JS, Singh HB (2014) Molecular mechanisms of interactions of Trichoderma with other fungal species. Open Mycol J 8:140–147

    Article  Google Scholar 

  • Schirmbock M, Lorito M, Wang YL, Hayes C, Arisan-Atac I, Scala F, Harman G, Kubicek C (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4344–4370

    Google Scholar 

  • Schmoll M (2008) The information highways of a biotechnological workhorse-signal transduction in Hypocrea jecorina. BMC Genomics 9:430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmoll M, Schuster A, Silva RDN, Kubicek CP (2009) The G-alpha protein GNA3 of Hypocrea jecorina (anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell 8(3):410–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seema M, Devaki NS (2012) In vitro evaluation of biological control agents against Rhizoctonia solani. J Agric Technol 8(1):233–240

    Google Scholar 

  • Seifullah P, Thomas BJ (1996) Studies on the parasitism of Globodera rostochiensis by Trichoderma harzianum using low temperature scanning electron microscopy. Afro-Asian J Nematol 6:117–122

    Google Scholar 

  • Sewariya SVK, Shrivastava R, Prasad G, Arora K (2012) In-vitro evaluation of novel synthetic compounds against Fusarium. Int J Pharm Biol Sci 3(3):910–920

    CAS  Google Scholar 

  • Sharma P (2011) Complexity of Trichoderma-Fusarium interaction and manifestation of biological control. Aust J Crop Sci 5(8):1027–1038

    CAS  Google Scholar 

  • Sharma R, Joshi A, Dhaker RC (2012a) A brief review on mechanism of Trichoderma fungus use as biological control agents. Int J Innov Bio-Sci 2(4):200–210

    Google Scholar 

  • Sharma RN, Maharshi RP, Gaur RB (2012b) Biocontrol of post-harvest green mould rot (Penicillium digitatum) of kinnow fruits using microbial antagonists. Indian Phytopathol 65(3):276–281

    Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693

    Article  CAS  PubMed  Google Scholar 

  • Shovan LR, Bhuiyan MKA, Begum JA, Pervez Z (2008) In vitro control of Colletotrichum dematium causing anthracnose of soybean by fungicides, plant extracts and Trichoderma harzianum. Int J Sustain Crop Prod 3(3):10–17

    Google Scholar 

  • Simon C, Sivasithamparam M (1988) Interactions among G. graminis var tritici, Trichoderma koningii and Soil Bacteria. Can J Microbiol 34:871–876

    Article  Google Scholar 

  • Singh US, Zaidi NW, Joshi D, Khan T, John D, Bajpai A, Singh N, Rohilla R (2004) Trichoderma: a microbe with multifaceted activity. Annu Rev Plant Physiol 3:33–75

    Google Scholar 

  • Singh US, Zaidi NW, Joshi D, Varshney S Khan T (2006) Current status of Trichoderma as a biocontrol agent. In: Ramanujam B, Rabindra R J (eds) Current status of biological control of plant diseases using antagonistic organisms. Technical Document No.57. Project Directorate of Biological Control, Banglore, India, pp 13–48

    Google Scholar 

  • Singh A, Shahid M, Srivastava M, Kumar V, Bansal A (2013) Antagonistic activity of Trichoderma viride isolate against different pathogen of Fusarium oxysporum isolated from legume crop of U.P. Progress Res 8(1):47–50

    Google Scholar 

  • Singh A, Srivastava M, Kumar V, Sharma A, Pandey S, Shahid M (2014) Exploration and interaction of Trichoderma species and their metabolites by confrontation assay against Pythium aphanidermatum. Int J Sci Res 3(7):44–48

    Google Scholar 

  • Sivan A, Chet I (1993) Integrated control of Fusarium crown and root of tomato with Trichoderma harzianum in combination with methyl bromide or soil solarization. Crop Prot 12:380–386

    Article  CAS  Google Scholar 

  • Soliman HM, El-Metwally MA, Elkahky MT, Badawi WE (2015) Alternatives to chemical control of grey mold disease on cucumber caused by Botrytis cinerea Pers. Asian J Plant Pathol 9:1–15

    Article  CAS  Google Scholar 

  • Song XY, Shen QT, Xie ST, Chen XL, Sun CY, Zhang YZ (2006) Broad spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 260:119–125

    Article  CAS  Google Scholar 

  • Suarez B, Rey M, Castillo P (2004) Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agentTrichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol 65:46–55

    Article  CAS  PubMed  Google Scholar 

  • Sundaramoorthy S, Balabaskar P (2013) Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. Lycopersici. J Appl Biol Biotechnol 1(3):036–040

    Google Scholar 

  • Svetlana Z, Stojanovic S, Ivanovic Z, Tatjana popovic VG, balaz J (2010) Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch Biol Sci Belgrade 62(3):611–623

    Article  Google Scholar 

  • Szabó M, Csepregi K, Gálber M, Virányi F, Fekete C (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control 63(2):121–128

    Article  Google Scholar 

  • Tapwal A, Thakur G, Chandra S, Tyagi A (2015) In-vitro evaluation of Trichoderma species against seed borne pathogens. Int J Biol Chem Sci 1(10):14–19

    Google Scholar 

  • Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Bristol, pp 311–346

    Chapter  Google Scholar 

  • Viterbo A, Harel M, Horwitz BA, Chet I, Mukherjee PK (2005) Trichoderma MAP-kinase signaling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Xu L (2012) Beauvericin, a bioactive compound produced by fungi: a short review. Molecules 17:2367–2377

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Dong Y, Zhao Q, Wang F, Liu K, Jiang B, Fang X (2014) Identification of the role of a MAP kinase Tmk2 in Hypocrea jecorina (Trichoderma reesei). Sci Rep 4:6732. doi:10.1038/srep06732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weindling R (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 24:1153–1179

    Google Scholar 

  • Windham GL, Windham MT, Williams WP (1989) Effects of Trichoderma spp. on maize growth and Meloidogyne arenaria reproduction. Plant Dis 73:493–494

    Article  Google Scholar 

  • Xu JR, Hamer JE (1996) MAP Kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporte grisea. Genes Dev 10:2696–2706

    Article  CAS  PubMed  Google Scholar 

  • Yamano T, Hemmi S, Yamamoto L, Tsubaki K (1970) Trichoviridin. A new antibiotic. Japanese Kokai 15435. Chem Abs 73, 65093

    Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi NW, Singh US (2004a) Use of farmyard manure for mass multiplication and delivery of biocontrol agents, Trichoderma harzianum and Pseudomonas fluorescens. Asian Agric Hist 8(4):297–304

    Google Scholar 

  • Zaidi NW, Singh US (2004b) Mass multiplication and delivery of Trichoderma and Pseudomonas. J Mycol Plant Pathol 34(3):732–741

    Google Scholar 

  • Zamani M, Tehrani AS, Ahmadzadeh M, Abadi AA (2006) Effect of fluorescent Pseudomonades and Trichoderma sp. and their combination with two chemicals on Penicillium digitatum caused agent of citrus green mold. Commun Agric Appl Biol Sci 71:1301–1310

    CAS  PubMed  Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Biol 1:227–234

    Google Scholar 

  • Zeilinger S, Reithner B, Scala V, Peissl I, Lorito M, Mach RL (2005) Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol 71:1591–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pandey, V., Shukla, A., Kumar, J. (2016). Physiological and Molecular Signalling Involved in Disease Management Through Trichoderma: An Effective Biocontrol Paradigm. In: Kumar, P., Gupta, V., Tiwari, A., Kamle, M. (eds) Current Trends in Plant Disease Diagnostics and Management Practices. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27312-9_14

Download citation

Publish with us

Policies and ethics