Skip to main content

Molecular Diagnosis of Killer Pathogen of Potato: Phytophthora infestans and Its Management

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Phytophthora diseases cause major losses to agricultural as well as to horticultural production in India and worldwide. Most Phytophthora diseases are soilborne except Late blight of Potato caused by Phytophthora infestans and difficult to control, making disease prevention an important component of many disease management strategies. Detection and identification of the causal agent, therefore, is an essential part of effective disease management. Although these methods are still fundamental there is an increasing move towards molecular diagnostics of fungi in all fields. Enumerating the pathogen upon detection is crucial to estimate the potential risks with respect to diseases development and provides a useful basis for diseases management decisions. Species of the genus Phytophthora are arguably the most destructive plant pathogens causing widespread damage to many agricultural, horticultural and ornamental crops, and to native ecosystems throughout the world. Globalization has increased the volume of plants being transported over long distances and has increased the spread of Phytophthora species. The morphological characteristics of these structures and various kinds of spores produced by them have been the basis of identification up to genus/species level and classification of these pathogens into family, order and class. The Polymerase Chain Reaction (PCR) has emerged as a tool for detecting microorganisms in many diverse environments. Thus far, it is clear that DNA-based detection systems exhibit higher levels sensitivity than conventional techniques. The possibility of detecting two or more pathogens simultaneously has become bright after the development of DNA array technology. The usefulness of immunoassays for early detection and precise identification has been significantly enhanced following the development of Enzyme-Linked Immunosorbent Assay (ELISA) and monoclonal antibodies (Dipsticks) which exhibit greater sensitivity and specificity compared with isolation based methods which are laborious and time-consuming. Disease management methods based on cultural, chemical control, resistant varieties, Diseases forecasting are illustrated. New technologies promise to improve the speed and accuracy of disease diagnostics and pathogen detection. Widespread adoption of standard operating procedures and diagnostic laboratory accreditation serve to build trust and confidence among institutions. Case studies of national and international diagnostic networks are presented. This review examines the technical advances in the field and the rationale for such studies on Phytophthora.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agindotan B, Perry KL (2007) Macroarray detection of plant RNA viruses using randomly primed and amplified complementary DNAs from infected plants. Phytopathology 97:119–127

    Article  CAS  PubMed  Google Scholar 

  • Agindotan B, Perry KL (2008) Macroarray detection of eleven potato-infecting viruses and potato spindle tuber viroid. Plant Dis 92:730–740

    Article  CAS  Google Scholar 

  • Al-Bashish D, Braik M, Bani-Ahmed S (2011) Detection and classification of leaf diseases using K-means based segmentation and neural-network based classification. Inform Technol J 10:267–275

    Article  Google Scholar 

  • Angela GS, Evelyn MM, Hartwig HG (1996) Polymerase chain reaction based assays for species specific detection of Fusariumculmorum, F. graminearum and F. avenaceaum. Phytopathology 10:120–130

    Google Scholar 

  • Bailey AM, Mitchell DJ, Manjunath KL, Nolasco G, Niblert CL (2002) Identification of the species level of the plant pathogens phytophthora and pythium by using unique sequences of the ITS1 region of ribosomal DNA as capture probes for PCR-ELISA. FEMS Microbiol Lett 207:153–158

    Article  CAS  PubMed  Google Scholar 

  • Bhat RG, Browne GT (2007) Development of an improved PCR based techniques for detection of Phytophthora cactorum in strawberry plants. Phytopathology 97:S10, Abstract

    Google Scholar 

  • Bhattacharyya SK, Phadatare SG, Khanna RN, Srivastava DS, Prasad B (1983) Efficacy of some fungicides in controlling late blight of potato in India. Indian J Agric Sci 53:153–157

    Google Scholar 

  • Bhattacharyya SK, Shekhwat GS, Singh BP (1990) Potato late blight. Tech Bull. No. 27. Central Potato Research Institute, Shimla, 40 p

    Google Scholar 

  • Bodrossy L, Sessitsch A (2004) Oligonucleotide microarrays in microbial diagnostics. Curr Opin Microbiol 7:245–254

    Google Scholar 

  • Bonants PJM, Hagenaar, De-Veerdt M, Van Gent-Pelzer MP, Lacourt I, Cooke DEL, Duncan JM (1997) Detection and identification of Phytophthora fragariae Hickman by the polymerase chain reaction. Eur J Plant Pathol 103:345–355

    Article  CAS  Google Scholar 

  • Bonants PJM, Van Gent-Pelzer MPE, Hooftman R, Cooke DEL, Guy DC, Duncan JM (2004) A combination of baiting and different PCR formats, including measurement of real time quantitative fluorescence, for the detection of Phytophthora fragariae in strawberry plants. Eur J Plant Pathol 110:689–702

    Article  CAS  Google Scholar 

  • Browine J, Shawcross S, Theaker J, Whitecombe D, Ferrie R, Newton C, Litte S (1997) The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res 25:3235–3241

    Article  Google Scholar 

  • Chahal SS, Pannu PPS (1997) Detection of Tilletiaindica in wheat and T. Barclayana in rice samples and its implication for seed certification. In: Hutchins JD, Reeves JC (eds) Seed health testing. CAB International. pp 153–158

    Google Scholar 

  • Chamberlian JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids 16:11141–11156

    Article  Google Scholar 

  • Chehab FF, Jeff W (1992) Detection of multiple cystic fibrosis mutations by reverse dot blot hybridization: a technology for carrier screening. Hum Genet 89:163–168

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Roxby R (1996) Characterization of a Phytophthora infestans gene involved in the vesicle transport. Gene 181:89–94

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Seifert K, Lévesque CA (2009) A high density COX1 barcode oligonucleotide array for identification and detection of species of Penicillium subgenus Penicillium. Mol Ecol Resour 9:114–129

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P, Brayford D, Smith J, Flood J (2003) Molecular discrimination of Phytophthora isolates on cocoa and their relationship with coconut, black pepper and bell pepper isolates based on rDNA repeat and AFLP fingerprinting. Curr Sci 84:1235–1238

    CAS  Google Scholar 

  • Clark MF, Adam AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483

    Google Scholar 

  • Coleman WD, Tsongalis GJ (1997) The polymerase chain reaction. In: Coleman WB, Tsongalis GJ (eds) Molecular diagnostics for the clinical laboratorian. Human Press, Totowa, pp 47–55

    Google Scholar 

  • Cook H (1947) Forecasting late blight epiphytotics of potatoes and tomatoes. J Agric Res 78:54–56

    Google Scholar 

  • Cooke HT (1947) Forecasting tomato late blight. Food Packer. Apr 1947. 69–70 p

    Google Scholar 

  • Cooke DEL, Drenth A, Dincan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32

    Article  CAS  PubMed  Google Scholar 

  • Cox AE, Large EC (1960) Potato blight epidemics throughout the world. Agricultural Research Service, United States Department of Agriculture, Agricultural Handbook No. 174. 230 p

    Google Scholar 

  • Cullens DW, Hirsch PR (1998) Simple and rapid method for the direct extraction of microbial DNA from soil for PCR. Soil Biol Biochem 30:983–993

    Article  Google Scholar 

  • Danks C, Barker I (2000) On-site detection of plant pathogens using lateral flow devices. EPPO Bull 30:421–426

    Article  Google Scholar 

  • Dewey FM, Macdoland M, Phillips SI, Priestley RA (1990) Development of monoclonal antibody-ELISA and monoclonal antibody–dipstick immunoassays for penicillium-islandicum in rice grains. J Gen Microbiol 136:753–760

    Article  CAS  PubMed  Google Scholar 

  • Dobrowolski MP (1998) Microsatellites in the mitochondrial genome of Phytophthora cinnamomi failed to provide highly polymorphic markers for population genetics. FEMS Microbiol Lett 163:243–248

    Article  CAS  PubMed  Google Scholar 

  • Dorrance AE, Inglis DA (1997) Assessment of greenhouse and laboratory screening methods for evaluating potato foliage for resistance to late blight. Plant Dis 81:1206–1213

    Article  Google Scholar 

  • Fessehaie A, De Boer SH, Lévesque CA (2003) An oligonucleotide array for the identification and differentiation of bacteria pathogenic on potato. Phytopathology 93:262–269

    Article  CAS  PubMed  Google Scholar 

  • Fry WE (1977) Integrated control of potato late blight: effects of polygenic resistance and techniques of timing fungicides applications. Phytopathology 67:415–420

    Article  CAS  Google Scholar 

  • Fry WE, Goodwin SB, Dyer AT, Matuszak JM, Drenth A, Tooley PW, Sujkowski LS, Koh YJ, Cohen BA, Spielman LJ, Deahl KL, Inglis DA, Sandlan KP (1993) Historical recent migrations of Phytophthora infestans: chronology, pathways and implications. Plant Dis 77:653–661

    Article  Google Scholar 

  • Fukuta S, Kato S, Yoshida K, Mizukami Y, Ishida A, Ueda J, Kanbe M, Ishimoto Y (2003a) Detection of Tomato yellow leaf curl virus by loop mediated isothermal amplification reaction. J Virol Methods 112:35–40

    Article  CAS  PubMed  Google Scholar 

  • Fukuta S, Iida T, Mizumkami Y, Ishida A, Ueda J, Kanbe M, Ishimoto Y (2003b) Detection of Japanese yam mosaic viruses by RT-LAMP. Arch Virol 148:1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Fukuta S, Ohishi K, Yoshida K, Mizukami Y, Ishida A, Kanbe M (2004) Development of immunocapture reverse transcriptase loop mediated isothermal amplification for the development of tomato spotted wilt form chrysanthemum. J Virol Methods 121:49–55

    Article  CAS  PubMed  Google Scholar 

  • Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies- a review. Nucleosides Nucleotides Nucleic Acids 27:224–243

    Article  CAS  PubMed  Google Scholar 

  • Gitaitis R, Walcott R (2007) The epidemiology and management of seedborne bacterial diseases. Annu Rev Phytopathol 45:71–97

    Article  CAS  Google Scholar 

  • Glen M, Smith AH, Langrell SRH, Mohammed CL (2007) Development of nested polymerase chain reaction detection of Mycosphaerella spp. and its application to the study of leaf disease in eucalyptus plantations. Phytopathology 97:132–144

    Article  CAS  PubMed  Google Scholar 

  • Goldsby RA, Kindt TJ, Osborne BA, Kuby J (2003) Immunology, 5th edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Goodwin SB (1997) The population genetics of Phytophthora. Phytopathology 87:462–473

    Article  CAS  PubMed  Google Scholar 

  • Goodwin SB, Drenth A (1997) Origin of the A2 mating type of Phytophthora infestans outside Mexico. Phytopathology 87:993–999

    Google Scholar 

  • Goodwin PH, Kirkpatrick BC, Duniways JM (1989) Cloned DNA probes for identification of Phytophthora parasitica. Phytopathology 79:716–721

    Article  CAS  Google Scholar 

  • Goodwin SB, Cohen BA, Fry WE (1994a) Panglobal distribution of single clonal lineage of the irish famine fungus. Proc Natl Acad Sci U S A 91:11591–11595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin SB, Cohen BA, Deahl KL, Fry WE (1994b) Migration from northern Mexico as the probable cause of recent genetic changes in populations of Phytophthora infestans in the United States and Canada. Phytopathology 84:553–558

    Article  Google Scholar 

  • Gottschling M, Plötner J (2004) Secondary, structure models of the nuclear internal transcribed spacer regions and 5.8 s r RNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. Nucleic Acids Res 32:307–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas BJ et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    Article  CAS  PubMed  Google Scholar 

  • Harrison JG, Barker H, Lowe R, Rees EA (1990) Estimation of amounts of Phytophthora infestans mycelium in leaf tissue by enzyme linked immunosorbent assay. Plant Pathol 39:274–277

    Google Scholar 

  • Hermosa MR, Grondona I, Diaz-Minguez JM, Iturriaga EA, Monte E (2001) Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological agent against soil borne fungal plant pathogens. Curr Genet 38:343–350

    Article  CAS  PubMed  Google Scholar 

  • Hillnhuetter C, Mahlein AK (2008) Early detection and localisation of sugar beet diseases: new approaches. Gesunde Pfianzen 60(4):143–149

    Article  Google Scholar 

  • Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:7276–7280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain T, Singh BP, Anwar F (in press) Development of specific marker for PCR diagnostic of Late blight of potato caused by Phytophthora infestans using RAPD based SCAR methodology. J Saudi Soc Agric Sci. Manuscript ID. JSSAS-D-13-00120R1 Accepted

    Google Scholar 

  • Hussain S, Lees AK, Duncan JM, Cooke DEL (2005) Development of a species-specific and sensitive detection assay for Phytophthora infestans and its application for monitoring of inoculum in tubers and soil. Plant Pathol 54:373–382

    Article  CAS  Google Scholar 

  • Hussain T, Anwar F, Tomar S (2010) Rapid and sensitive detection of Phytophthora infestans in infected tubers by ITS region based Primers. In: 6th JK science congress, University of Kashmir, BT-7, p 225

    Google Scholar 

  • Hussain T, Sharma S, Singh BP, Jeevalatha A, Sagar V, Sharma NN, Kaushik SK, Chakrabarti SK, Anwar F (2013) Detection of latent infection of Phytophthora infestans in potato seed tubers. Potato Journal 40(2):142–148.

    Google Scholar 

  • Hussain T, Sharma S, Singh BP, Anwar F (2013) Fast, easier and sensitive detection of late blight of potato caused by Phytophthora infestans through Internal Transcribed Spacer (ITS) region based marker. In: UGC –DRS-1 sponsored national seminar on plant sciences: new technologies, conservation and environment. 23–24th Feb 2013, Department of Botany, AMU, Aligarh, p 14

    Google Scholar 

  • Hussain T, Singh BP, Anwar F (2013a) A noval ITS region based marker for early detection of Phytophthora infestans, causing Late Blight of Potato in India. In: Proceedings of international conference on health, environment and industrial biotechnology (BioSangam-2013), MNNIT, Tata McGraw Publishers, Allahabad, UP, Nov 21st-23r 2013, pp 147–153

    Google Scholar 

  • Hussain T, Singh BP, Anwar F (2013b) A Quantitative Real Time PCR of Phytophthora infestans in different Indian potato cultivars. IOSR J Agric Vet Sci 4(4):17–26

    Article  Google Scholar 

  • Hussain T, Singh BP, Anwar F (2013c) Real Time PCR based determination of Phytophthora infestans colonization in potato tubers at cold storage in India. Online J Biosci inform 4(2):159–178

    Google Scholar 

  • Hussain T, Singh BP, Kaushik SK, Lal M, Gupta A (2014) PCR protocol for quick and combined detection of Early and Late Blights of Potato. In: National seminar on emerging problems of potato, 1st and 2nd Nov 2014, CPRI and IPA, Shimla, HP, p 169

    Google Scholar 

  • Hussain T, Singh BP, Firoz A (2014) A quantitative real time PCR based method for the detection of P. infestans causing late blight of potato, in infested soil. Saudi J Biol Sci 21:380–386

    Article  CAS  PubMed  Google Scholar 

  • Hussain T, Singh B, Anwar F, Tomar S (2015) A simple method for diagnostic of Phytophthora infestans (Mont.) de Bary from potato agricultural fields of potato. Turk J Agricult – Food Sci Tech 3(12):904–907

    Google Scholar 

  • Iwamtoo T, Sonobe T, Hayashi L (2003) Loop mediated isothermal amplification for the direct detection of Mycobacterium tuberculosis complex, M. Avium, and M. Intracellular in sputum samples. J Clin Methods 41:2616–2622

    Google Scholar 

  • Jackson GW, McNichols RJ, Fox GE, Willson RC (2007) Universal bacterial identification by mass spectrometry of 16S ribosomal RNA cleavage products. Int J Mass Spectrom 261:218–226

    Article  CAS  Google Scholar 

  • Jayan MH, Huang LC, Ann PJ, Liou RF (2002) Rapid detection of Phytophthora infestans by PCR. Plant Pathol Bull 11:25–32

    Google Scholar 

  • Jeffers SN, Aldwinkle HS (1987) Enhancing detection of Phytophthora cactorum in naturally infested soil. Phytopathology 77:1475–1482

    Article  Google Scholar 

  • Judelson HS, Tooley PW (2000) Enhanced polymerase chain reaction methods for detecting and quantifying Phytophthora infestans in plants. Phytopathology 90:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Karolev AA (1978) Slightly infected tubers as the source of Phytophthora. Zasbechita Rastenii 8:49

    Google Scholar 

  • Kim K, Lee YS, Choi HS (1998) Analyses of genetic relationships of rhizoctonia solani from various crop species and rapid identification of anatomises group with RAPD method. Kor J Mycol 26:373–379

    Google Scholar 

  • Kim YJ, Kim SO, Chung HJ, Jee MS, Kim BG, Kim KM, Yoon JH, Lee HS, Kim CY, Kim S, Yoo W, Hong SP (2005) Population genotyping of hepatitis C virus by matrix-assisted lase desorption/ionization time of flight mass spectrometry analysis of short DNA fragments. Clin Chem 51:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Kong P, Hong CX, Tooley PW, Ivors K, Garbelotto M, Richardson PA (2004) Rapid identification of Phytophthora ramorum using PCR-SSCP analysis of ribosomal DNA ITS-1. Lett Appl Microbiol 38:433–439

    Article  CAS  PubMed  Google Scholar 

  • Lane CR, Hobden E, Walker L, Barton VC, Inman AJ, Hughes KJD, Swan H, Colyer A, Barker I (2007) Evaluation of a rapid diagnostic filed test kit for identification of Phytophthora species including P. ramorum and P. kernoviae at the point of inspection. Plant Pathol 56:828–835

    Article  Google Scholar 

  • Lau A, Sorrell TC, Chen S, Stanley K, Iredell J, Halliday C (2009) Multiplex tandem PCR: a novel platform for rapid detection and identification of fungal pathogens from blood culture specimens. J Clin Microbiol 46:3021–3027

    Google Scholar 

  • Le Floch G, Tambong J, Vallance J, Tirilly Y, Lévesque A, Rey P (2007) Rhizosphere persistence of three Pythium oligandrum strains in tomato soilless culture assessed by DNA macroarray and real-time PCR. FEMS Microbiol Ecol 61:317–326

    Article  PubMed  CAS  Google Scholar 

  • Leushner J, Chiu NHL (2000) Automated mass spectrometry: a revolutionary technology for clinical diagnostics. Mol Diagn 5:341–348

    Article  CAS  PubMed  Google Scholar 

  • Lévesque CA, Harlton CE, de Cock AWAM (1998) Identification of some oomycetes by reverse dot blot hybridization. Phytopathology 88:213–222

    Article  PubMed  Google Scholar 

  • Lievens B, Thomma BPHJ (2005) Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice. Phytopathology 95:1374–1380

    Article  CAS  PubMed  Google Scholar 

  • Lievens B, Brouwer M, Vanachter ACRC, Lévesque CA, Cammue BPA, Thomma BPHJ (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiol Lett 223:113–122

    Article  CAS  PubMed  Google Scholar 

  • Liew ECY, Maclean DJ, Irwin JAG (1998) PCR based detection of Phyophthora medicaginis using the intergenic spacer region of the ribosomal DNA. Mycol Res 102:73–80

    Article  CAS  Google Scholar 

  • Manicon BQ, Bar-Joseph M, Rosmer A, Vigodsky-Haas H, Kotze JM (1987) Potential application of random DNA probes and restriction fragments length polymorphism in the taxonomy of the fusarial. Phytopathology 77:669–672

    Article  Google Scholar 

  • Mercado-Blanco J, Rodriguez-Jurado D, Jiménez-Diaz RM (2001) Detection of the nondefoliating pathotype of Verticilium daliae in infected olive plants by nested PCR. Plant Pathol 50:609–619

    Article  CAS  Google Scholar 

  • Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Methods Res Commun 289:150–154

    Article  CAS  Google Scholar 

  • Mori Y, Kitao M, Tomita N, Notomi T (2004) Real time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods 59:145–157

    Article  CAS  PubMed  Google Scholar 

  • Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR green I monitoring during amplification. Biotechniques 24:954–958

    CAS  PubMed  Google Scholar 

  • Mumford R, Skelton A, Metcalfe E, Walsh K, Boonham N (2004) The reliable detection of barley yellow and mild mosaic viruses using real time PCR (Taq Man). J Virol Methods 117:153–159

    Article  CAS  PubMed  Google Scholar 

  • Niederhauser JS (1991) Phytophthora infestans: the Mexican connection. In: Lucas JA, Shattock RC, Shaw DS, Cooke LR (eds) Phytophthora. Cambridge University Press, Cambridge, UK, pp 25–45

    Google Scholar 

  • Ostu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  • Prasad Babu MS, Srinivasa Rao B (2010) Leaves recognition using back propogation neural network-advice for pest and disease control on crops. Technical report, Department of computer science and systems engineering. Andhra University, Visakhapatnam

    Google Scholar 

  • Punja ZK, Wan A, Goswami RS, Verma N, Rahman M, Barasubiye T, Seifert KA, Lévesque CA (2007) Diversity of Fusarium species associated with discolored ginseng roots in British Columbia. Can J Plant Pathol 29:340–353

    Article  CAS  Google Scholar 

  • Ratti C, Budge G, Ward I, Clove G, Rubies-Autonell C, Henry C (2004) Detection and relative quantification of soil-borne cereal mosaic virus(SBCMV) and Polymyxa graminis in winter wheat using real time PCR (Taqman). J Virol Methods 122:95–103

    Article  CAS  PubMed  Google Scholar 

  • Robertson NF (1991) The challenge of Phytophthora infestans. Adv Plant Pathol 7:1–30

    Google Scholar 

  • Robideau GP, Caruso FL, Oudemans PV, McManus PS, Renaud MA, Auclair ME, Bilodeau GJ, Yee D, Désaulniers NL, DeVerna JW, Lévesque CA (2008) Detection of cranberry fruit rot fungi using DNA array hybridization. Can J Plant Pathol 30:226–240

    Article  CAS  Google Scholar 

  • Rollo F, Amici A, Francesca F, Di Silvestro I (1987) Construction and characterization of a cloned probe for the detection of Phomatracheiphila in plant tissues. Appl Microbiol Biotechnol 26:352–357

    Article  CAS  Google Scholar 

  • Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW, Plumer L (2010) Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput Electron aAgric 74(1):91–99

    Article  Google Scholar 

  • Schena L, Cooke DEL (2006) Assessing the potential of regions of the nuclear and mitochondrial genome to develop a molecular tool box for the detection and characterization of phytophthora species. J Microb Methods 67:70–85

    Article  CAS  Google Scholar 

  • Schubert R, Bahnweng G, Nechwall GJ, Jung T, Cooke DEL, Duncan JM, Müller-Stark G, Langebartels C, Sandermann H Jr, Oßwald W (1999) Detection and quantification of Phytophthora species, which are associated withroot-rot disease in European deciduous forests by speciesspecific polymerase chain reaction. Eur J For Pathol 29:169–188

    Article  Google Scholar 

  • Sezgin M, Sankur B (2003) Survey over image threshold techniques and quantitative performances evaluation. J Electron Imaging 13(1):146–165

    Google Scholar 

  • Sholberg PL, O’Gorman D, Bedford K, Lévesque CA (2005) Development of a DNA macroarray for detection and monitoring of economically important apple diseases. Plant Dis 89:1143–1150

    Article  CAS  Google Scholar 

  • Sholberg PL, O’Gorman D, Bedford KE (2006) Monitoring Erwiniaamylovora in pome fruit orchards using reverse dot-blot hybridization. Acta Horticult 704:91–98

    Article  CAS  Google Scholar 

  • Siricord C, O’Brien PA (2008) MALDI-TOF mass spectroscopy can be used for detection of pathogenic microorganisms in soil. Aust Plant Pathol 37:543–545

    Article  CAS  Google Scholar 

  • Singh BP, Roy S, Bhattacharyya SK (1994) Occurrence of the A2 mating type of Phytophthora infestans in India. Potato Research 37:227–231

    Google Scholar 

  • Stanley KK, Szewczuk E (2005) Multiplexed tandem PCR: gene profiling from small amounts of RNA using SYBR Green detection. Nucleic Acids Res 33:e180. doi:10.1093/nar/gni182

    Google Scholar 

  • Summerbell RC, Lévesque CA, Seifert KA, Bovers M, Fell JW, Diaz MR, Boekhout T, de Hoog GS, Stalpers J, Crous PW (2005) Microcoding: the second step in DNA barcoding. Philos Trans R Soc B 360:1897–1903

    Article  CAS  Google Scholar 

  • Tambong JT, de Cock AWAM, Tinker NA, Lévesque CA (2006) Oligonucleotide array for identification and detection of Pythium species. Appl Environ Microbiol 72:2691–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor EJA, Stevens EA, Bates JA, Morreal G, Lee D, Kenyon DM, Thomas JE (2001) Rapid-cycle PCR detection of Pyrenophora graminea from barley seed. Plant Pathol 50:347–355

    Article  CAS  Google Scholar 

  • Tomar S, Kumar S, Tyagi S and Hussain T (2010) Safe and environment friendly method for control of late blight disease of potato. In: 6th J&K science congress, University of Kashmir. BO-11, p 137

    Google Scholar 

  • Tomar S, Singh BP, Lal M, Khan MA, Hussain T, Sharma S, Kaushik SK, Kumar S (2014) Screening of noval microorganism for biosurfactant and biocontrol activity against Phytophthora infestans. J Env Biol 35:893–899

    Google Scholar 

  • Tomlinson JA, Barker I, Boonham (2007) Faster, simpler, more specific methods for improved molecular detection of Phytophthora ramorum in the field. Appl Environ Microbiol 73:4040–4047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trout CL, Ristaino JB, Madritch M, Wangsomboondee T (1997) Rapid detection of P. infestans in late blight –infected potato and tomato using PCR. Plant Dis 81:1042–1048

    Article  CAS  Google Scholar 

  • Tsao P, Guy S (1977) Inhibition of Mortierella and Pythium in a Phytophthora isolation medium containing hymexazol. Phytopatholgy 67:796–801

    Article  CAS  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons – probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Kushida A, Momota Y (1999) Rapid and sensitive identification of Pratylenchus spp. using reverse dot blot hybridization. Nematology 1:549–555

    Article  CAS  Google Scholar 

  • Van der Plank (1984) Diseases resistance in plants. Academic, Orlando, 194p

    Google Scholar 

  • Van der Wolf JM, Peters J, Bergervoet JHW (2005) Multiplex detection of viral and bacterial pathogens with the luminex technology, a fluid microarray system. Cost action 853, Gdansk

    Google Scholar 

  • Varga A, James D (2006) Use of reverse transcriptase loop-mediated isothermal amplification for the detection of Plum pox virus. J Virol Methods 138:184–190

    Article  CAS  PubMed  Google Scholar 

  • Vignali DA (2000) Multiplexed particle based flow cytometric assays. J Immunol Methods 21:243–255

    Article  Google Scholar 

  • Wang Y, Ren Z, Zheng XB, Wang YC (2007) Detection of Phytophthora melonis in samples of soil, water and plant tissue with PCR. Can J Plant Pathol 29:172–181

    Article  CAS  Google Scholar 

  • Wen K, Segin P, St Arnaud M, Jabaji-Hare S (2005) Real time quantitative TR-PCR of defence-associated gene transcripts of Rhizoctoniasolani-infected bean seedlings in response to inoculation with a non pathogenic binucleate. Rhizoctonia isolate. Phytopathology 95:345–353

    Article  CAS  PubMed  Google Scholar 

  • Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807

    Article  CAS  PubMed  Google Scholar 

  • White T, Burns T, Lees S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Inms M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Widmark AK (2010) The Late blight Pathogen: Phytophthora infestans: Interaction with potato plants and Inoculum source. Phd Thesis. Swedish University of Agriculture Science, Uppsala, 4 p

    Google Scholar 

  • Williams R, Ward E, McCartney HA (2001a) Methods for integrated air sampling and DNA analysis for the detection of air borne fungal spores. Appl Environ Microbiol 67:2453–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (2001b) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  Google Scholar 

  • Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–138

    CAS  PubMed  Google Scholar 

  • Zhang Y, Coyne MY, Will SG, Levenson CH, Kawasaki ES (1991) Single-base mutational analysis of cancer and genetic diseases using membrane bound modified oligonucleotides. Nucleic Acids Res 19:3929–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Geiser MD, Smart CD (2007) Macroarray detection of solanaceous plant pathogens in the Fusarium solani species complex. Plant Dis 91:1612–1620

    Article  CAS  Google Scholar 

  • Zhang N, McCarthy ML, Smart CD (2008) A macroarray system for the detection of fungal and oomycete pathogens of solanaceous crops. Plant Dis 92:953–960

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touseef Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hussain, T., Singh, B.P. (2016). Molecular Diagnosis of Killer Pathogen of Potato: Phytophthora infestans and Its Management. In: Kumar, P., Gupta, V., Tiwari, A., Kamle, M. (eds) Current Trends in Plant Disease Diagnostics and Management Practices. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27312-9_1

Download citation

Publish with us

Policies and ethics