Skip to main content

Radiative Heat Transfer in High-Pressure Combustion Systems

  • Chapter
  • First Online:
Radiative Heat Transfer in Turbulent Combustion Systems

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

Many practical turbulent combustion systems operate at pressures higher than atmospheric, and the general trend in many applications is toward higher operating pressures. On the other hand, most detailed experimental data are limited to atmospheric pressure laboratory turbulent flames, such as those discussed in the previous chapter, and relatively little work to date has focused on radiative heat transfer and TRI at elevated pressures. High-pressure specific issues in combustion and radiation heat transfer are first reviewed briefly. This is followed by an example of a modeling study for a high-pressure laminar flame. Many practical combustion systems use fuels that are introduced as a liquid fuel spray, and spray/radiation coupling is discussed next. Finally, recent work in modeling radiative heat transfer in piston engines and in high-speed combustion systems is reviewed in the final two subsections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.D. Reitz, Directions in internal combustion engine research. Combust. Flame 160, 1–8 (2013)

    Article  Google Scholar 

  2. A.H. Lefebvre, D.R. Ballal, Gas Turbine Combustion: Alternative Fuels and Emissions, 3rd edn. (CRC, Hoboken, 2010)

    Book  Google Scholar 

  3. G.P. Sutton, O. Biblarz, Rocket Propulsion Elements, 8th edn. (Wiley, Hoboken, 2011)

    Google Scholar 

  4. S.R. Turns, An Introduction to Combustion: Concepts and Applications, 3rd edn. (McGraw-Hill, New York, 2011)

    Google Scholar 

  5. G. Pal, M.F. Modest, k-distribution methods for radiation calculations in high pressure combustion. J. Thermophys. Heat Transf. 27(3), 584–587 (2013)

    Google Scholar 

  6. J. Cai, S. Lei, A. Dasgupta, M.F. Modest, D.C. Haworth, High fidelity radiative heat transfer models for high-pressure laminar hydrogen-air diffusion flames. Combust. Theor. Model. 18, 607–626 (2014)

    Article  MathSciNet  Google Scholar 

  7. M.P. Mengüc, R. Viskanta, C.R. Ferguson, Multidimensional modeling of radiative heat transfer in diesel engines. SAE Technical Paper No. 850503 (1985)

    Google Scholar 

  8. S.P. Roy, J. Cai, M.F. Modest, Photon Monte Carlo method for radiation calculations in spray combustion, in ICHMT International Symposium on Advances in Computational Heat Transfer, Piscataway, 25–29 May 2015

    Google Scholar 

  9. G. Borman, K. Nishiwaki, Internal combustion engine heat transfer. Progr. Energy Combust. Sci. 13, 1–46 (1987)

    Article  Google Scholar 

  10. J. Abraham, V. Magi, Application of the discrete ordinates method to compute radiant heat loss in a diesel engine. Numer. Heat Transf. A 31, 597–610 (1997)

    Article  Google Scholar 

  11. J.F. Wiedenhoefer, R.D. Reitz, A multidimensional radiation model for diesel engine simulations with comparison to experiment. Numer. Heat Transf. A 44, 665–682 (2003)

    Article  Google Scholar 

  12. T. Yoshikawa, R.D. Reitz, Effect of radiation on diesel engine combustion and heat transfer. J. Thermal Sci. Technol. 4, 86–97 (2009)

    Article  Google Scholar 

  13. Office of Science and Office of Energy and Renewable Energy, U.S. Department of Energy, in A Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE) (2011). http://www1.eere.energy.gov/vehiclesandfuels/pdfs/presice_rpt.pdf

  14. V. Raj Mohan, D.C. Haworth, Turbulence-chemistry interactions in a heavy-duty compression-ignition engine. Proc. Combust. Inst. 35, 3053–3060 (2015)

    Article  Google Scholar 

  15. M.P.B. Musculus, P.C. Miles, L.M. Pickett, Conceptual models for partially premixed low-temperature diesel combustion. Progr. Energy Combust. Sci. 39, 246–283 (2013)

    Article  Google Scholar 

  16. S.P. Roy, J. Cai, A. Sircar, A. Imren, S. Ferreyro-Fernandez, D.C. Haworth, M.F. Modest, Radiative heat transfer under engine-relevant conditions, in 9th U.S. National Combustion Meeting, Cincinnati, 17–20 May 2015

    Google Scholar 

  17. Y.F. Zhang, R. Vicquelin, O. Gicquel, J. Taine, Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations. Int. J. Heat Mass Transf. 61, 654–666 (2013)

    Article  Google Scholar 

  18. R. Vicquelin, Y.F. Zhang, O. Gicquel, J. Taine, Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations. J. Fluid Mech. 753, 360–401 (2014)

    Article  MathSciNet  Google Scholar 

  19. H.F. Nelson, Radiative heating in scramjet combustors. J. Thermophys. Heat Transf. 11, 59–64 (1997)

    Article  Google Scholar 

  20. A.J. Crow, I.D. Boyd, M.S. Brown, J. Liu, Thermal radiative analysis of the HIFiRE-2 scramjet. AIAA Paper no. 2012-2751 (2012)

    Google Scholar 

  21. A.J. Crow, Computational uncertainty quantification of thermal radiation in supersonic combustion chambers. Ph.D. thesis, The University of Michigan, Ann Arbor, 2013

    Google Scholar 

  22. S.T. Surzhikov, J.S. Shang, Radiative heat exchange in a hydrogen-fueled scramjet combustion chamber. AIAA Paper no. 2013-0448 (2013)

    Google Scholar 

  23. B.E. Pearce, Radiative heat transfer within a solid-propellant rocket motor. J. Spacecraft Rockets 15, 125–128 (1978)

    Article  Google Scholar 

  24. K.J. Hammad, M.H. Naraghi, Radiative heat transfer in rocket thrust chambers and nozzles. AIAA Paper no. 89-1720 (1989)

    Google Scholar 

  25. R. Duval, A. Soufiani, J. Taine, Coupled radiation and turbulent multiphase flow in an aluminised solid propellant rocket engine. J. Quant. Spectrosc. Radiat. Transf. 84, 513–526 (2004)

    Article  Google Scholar 

  26. M.H. Naraghi, S. Dunn, D. Coats, Modeling of radiation heat transfer in liquid rocket engines. AIAA Paper no. 2005-3935 (2005)

    Google Scholar 

  27. F. Goebel, B. Kniesner, M. Frey, O. Knab, C. Mundt, Radiative heat transfer analysis in modern rocket combustion chambers. CEAS Space J. 6, 79–98 (2014)

    Article  Google Scholar 

  28. A.A. Alexeenko, N.E. Gimelshein, D.A. Levin, R.J. Collins, R. Rao, G.V. Candler, S.F. Gimelshein, J.S. Hong, T. Schilling, Modeling of flow and radiation in the Atlas plume. J. Thermophys. Heat Transf. 16, 50–57 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Modest, M.F., Haworth, D.C. (2016). Radiative Heat Transfer in High-Pressure Combustion Systems. In: Radiative Heat Transfer in Turbulent Combustion Systems. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-27291-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27291-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27289-4

  • Online ISBN: 978-3-319-27291-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics