Skip to main content

Chemically Reacting Turbulent Flows

  • Chapter
  • First Online:
Radiative Heat Transfer in Turbulent Combustion Systems

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 1585 Accesses

Abstract

The basic equations governing a turbulent reacting system are presented, starting with the unaveraged/unfiltered partial differential equations (PDEs) and ancillary equations for a gas-phase multicomponent reacting system. These equations describe both laminar flames and turbulent flames where all continuum spatial and temporal scales are fully resolved (direct numerical simulation—DNS). In simulations of practical turbulent combustion systems, it is not feasible to resolve all relevant scales explicitly, and one of two approaches is usually adopted to reduce the dynamic range of scales and to account for influences of turbulent fluctuations at unresolved scales on the resolved scales: Reynolds averaging (Reynolds-averaged Navier–Stokes—RANS), in which the influences of all turbulent fluctuations with respect to an appropriately defined local mean are modeled, or spatial filtering (large-eddy simulation—LES) in which only the influences of turbulent fluctuations at scales smaller than a prescribed lower limit (the filter scale) are modeled. Probability density functions (PDFs) are a particularly effective approach for modeling chemically reacting turbulent flows with radiative heat transfer; PDF methods are introduced here, and are subsequently used in many of the examples that are discussed in later chapters. The general notion of turbulence–chemistry interactions (TCI) in RANS and in LES is discussed, using the PDF framework. Finally, extensions to accommodate multiphase systems (soot, liquid fuel sprays, and coal) are discussed. Together with the material on radiation and turbulence–radiation interactions (TRI) in the next chapter, this provides the foundation that is needed for the examples that are presented and discussed in subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.K. Kuo, Principles of Combustion, 2nd edn. (Wiley, Hoboken, 2005)

    Google Scholar 

  2. R.J. Kee, G. Dixon-Lewis, J. Warnatx, M.E. Coltrin, J.A. Miller, A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties. Technical Report SAND86-8246, Sandia National Laboratory, 1986

    Google Scholar 

  3. S.R. Turns, An Introduction to Combustion: Concepts and Applications, 3rd edn. (McGraw-Hill, New York, 2011)

    Google Scholar 

  4. R.S. Barlow, J.H. Frank, Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)

    Article  Google Scholar 

  5. D. Veynante, J. Piana, J.M. Duclos, C. Martel, Experimental analysis of flame surface density models for premixed turbulent combustion. Proc. Combust. Inst. 26, 413–420 (1996)

    Article  Google Scholar 

  6. T.D. Fansler, D.T. French, The scavenging flow field in a crankcase-compression two-stroke engine: a three-dimensional laser-velocimetry survey. SAE Technical Paper No. 920417 (1992)

    Google Scholar 

  7. S.B. Pope, PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  Google Scholar 

  8. D.C. Haworth, Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)

    Article  Google Scholar 

  9. D.C. Haworth, S.B. Pope, Transported probability density function methods for Reynolds-averaged and large-eddy simulations, in Turbulent Combustion Modeling - Advances, New Trends and Perspectives, ed. by T. Echekki, E. Mastorakos (Springer, Berlin, 2011), pp. 119–142

    Chapter  Google Scholar 

  10. S.B. Pope, Computations of turbulent combustion: progress and challenges. Proc. Combust. Inst. 23, 591–612 (1990)

    Article  Google Scholar 

  11. P. Givi, Filtered density function for subgrid scale modeling of turbulent combustion. Am. Inst. Aeronaut. Astronaut. J. 44, 16–23 (2006)

    Article  Google Scholar 

  12. A. Leonard, Energy cascade in large eddy simulation of turbulent fluid flow. Adv. Geophys. 18A, 237–248 (1974)

    Google Scholar 

  13. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  14. J. Jaishree, D.C. Haworth, Comparisons of Lagrangian and Eulerian PDF methods in simulations of nonpremixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions. Combust. Theory Model. 16, 435–463 (2012)

    Article  MATH  Google Scholar 

  15. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 3rd edn. (Poinsot, Toulouse, 2011)

    Google Scholar 

  16. Y.Z. Zhang, Hybrid particle/finite-volume PDF methods for three-dimensional time-dependent flows in complex geometries. Ph.D. thesis, The Pennsylvania State University, University Park, 2004

    Google Scholar 

  17. R.S. Barlow, J.H. Frank, Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)

    Article  Google Scholar 

  18. B.S. Haynes, H.G. Wagner, Soot formation. Prog. Energy Combust. Sci. 7, 229–273 (1981)

    Article  Google Scholar 

  19. H. Bockhorn (ed.), Soot Formation in Combustion: Mechanisms and Models (Springer, Berlin, 1994)

    Google Scholar 

  20. I.M. Kennedy, Models of soot formation and oxidation. Prog. Energy Combust. Sci. 23, 95–132 (1997)

    Article  Google Scholar 

  21. H. Richter, J.B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot - a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26, 565–608 (2000)

    Article  Google Scholar 

  22. D.R. Tree, K.I. Svensson, Soot processes in compression ignition engines. Prog. Energy Combust. Sci. 33, 272–309 (2007)

    Article  Google Scholar 

  23. C.R. Shaddix, T.C. Williams, Soot: giver and taker of light. Am. Sci. 95, 232–239 (2007)

    Article  Google Scholar 

  24. H. Wang, Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33, 41–67 (2011)

    Article  Google Scholar 

  25. S.P. Roy, Aerosol-dynamics-based soot modeling of flames. Ph.D. thesis, The Pennsylvania State University, University Park, 2014

    Google Scholar 

  26. S.J. Harris, A.M. Weiner, Chemical kinetics of soot particle growth. Ann. Rev. Phys. Chem. 36, 31–52 (1985)

    Article  Google Scholar 

  27. M. Frenklach, H. Wang, Detailed modeling of soot particle nucleation and growth. Proc. Combust. Inst. 23, 1559–1566 (1991)

    Article  Google Scholar 

  28. M. Frenklach, H. Wang, Detailed mechanism and modeling of soot particle formation, in Soot Formation in Combustion: Mechanisms and Models, ed. by H. Bockhorn (Springer, Berlin, 1994), pp. 162–190

    Google Scholar 

  29. M. Frenklach, Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4, 2028–2037 (2002)

    Article  Google Scholar 

  30. K.G. Neoh, J.B. Howard, A.F. Sarofim, Soot oxidation in flames, in Particulate Carbon: Formation During Combustion, ed. by D.C. Siegla, G.W. Smith (Plenum, New York, 1981), pp. 162–282

    Google Scholar 

  31. M. Sirignano, J. Kent, A. D’Anna, Modeling formation and oxidation of soot in nonpremixed flames. Energy Fuels 27, 2303–2315 (2013)

    Article  Google Scholar 

  32. K.M. Leung, R.P. Lindstedt, W.P. Jones, A simplified reaction mechanism for soot formation in nonpremixed flames. Combust. Flame 87, 289–305 (1991)

    Article  Google Scholar 

  33. J.P. Gore, G.M. Faeth, Structure and spectral radiation properties of turbulent ethylene/air diffusion flames. Proc. Combust. Inst. 21, 1521–1531 (1986)

    Article  Google Scholar 

  34. S.Y. Lee, Detailed studies of spatial soot formation processes in turbulent ethylene jet flames. Ph.D. thesis, The Pennsylvania State University, University Park, 1998

    Google Scholar 

  35. I.M. Kennedy, W. Kollmann, J.Y. Chen, A model for soot formation in a laminar diffusion flame. Combust. Flame 81, 73–85 (1990)

    Article  Google Scholar 

  36. M.B. Colket, R.J. Hall, Successes and uncertainties in modelling soot formation in laminar, premixed flames, in Soot Formation in Combustion: Mechanisms and Models (Springer, Berlin, 1994), pp. 442–468

    Google Scholar 

  37. M. Frenklach, Method of moments with interpolative closure. Chem. Eng. Sci. 57, 2229–2239 (2002)

    Article  Google Scholar 

  38. M.E. Mueller, G. Blanquart, H. Pitsch, Hybrid method of moments for modeling soot formation and growth. Combust. Flame 156, 1143–1155 (2009)

    Article  Google Scholar 

  39. M. Balthasar, M. Kraft, A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames. Combust. Flame 133, 289–298 (2003)

    Article  Google Scholar 

  40. S. Rigopoulos, PDF method for population balance in turbulent reactive flow. Chem. Eng. Sci. 62, 6865–6878 (2007)

    Article  Google Scholar 

  41. R.S. Mehta, Detailed modeling of soot formation and turbulence-radiation interactions in turbulent jet flames. Ph.D. thesis, The Pennsylvania State University, University Park, 2008

    Google Scholar 

  42. W. Kollmann, I.M. Kennedy, M. Metternich, J.-Y. Chen, PDF prediction of sooting turbulent flames, in Soot Formation in Combustion: Mechanisms and Models, ed. by H. Bockhorn (Springer, Berlin, 1994), pp. 503–526

    Chapter  Google Scholar 

  43. M. Balthasar, F. Mauss, A. Knobel, M. Kraft, Detailed modeling of soot formation in a partially stirred plug flow reactor. Combust. Flame 128, 395–409 (2002)

    Article  Google Scholar 

  44. R.P. Lindstedt, S.A. Louloudi, Joint-scalar transported PDF modeling of soot formation and oxidation. Proc. Combust. Inst. 30, 775–783 (2005)

    Article  Google Scholar 

  45. I.M. Aksit, J.B. Moss, A hybrid scalar model for sooting turbulent flames. Combust. Flame 145, 231–244 (2006)

    Article  Google Scholar 

  46. G.M. Faeth, Spray combustion phenomena. Proc. Combust. Inst. 26, 1593–1612 (1996)

    Article  Google Scholar 

  47. W.A. Sirignano, Fluid Dynamics and Transport of Droplets and Sprays (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  48. P. Jenny, D. Roekaerts, N. Beishuizen, Modeling of turbulent dilute spray combustion. Prog. Energy Combust. Sci. 38, 846–887 (2012)

    Article  Google Scholar 

  49. J.K. Dukowicz, A particle-fluid numerical model for liquid sprays. J. Comp. Phys. 35, 229–253 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  50. E. Loth, Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Energy Combust. Sci. 26, 161–223 (2000)

    Article  Google Scholar 

  51. F. Mashayek, R.V.R. Pandya, Analytical description of particle/droplet-laden turbulent flows. Prog. Energy Combust. Sci. 29, 329–378 (2003)

    Article  Google Scholar 

  52. D.L. Marchisio, R.O. Fox, Multiphase Reacting Flows: Modelling and Simulation (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  53. F.A. Williams, Spray combustion and atomization. Phys. Fluids 1, 541–545 (1958)

    Article  MATH  Google Scholar 

  54. S. Subramaniam, Statistical modeling of sprays using the droplet distribution function. Phys. Fluids 13, 624–642 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Kösters, A. Karlsson, Validation of the VSB2 spray model against spray A and spray H. Atomization Sprays (2015, in press)

    Google Scholar 

  56. A.M. Lippert, R.D. Reitz, Modeling of multicomponent fuels using continuous distributions with application to droplet evaporation and sprays. SAE Technical Paper No. 972882 (1997)

    Google Scholar 

  57. M.S. Raju, LSPRAY-II: a Lagrangian spray module. Technical Report NASA/CR-2004-212958. NASA Glenn Research Center, 2004

    Google Scholar 

  58. M.S. Raju, Numerical investigation of various atomization models in the modeling of a spray flame. Technical Report NASA/CR-2005-214033. NASA Glenn Research Center, 2005

    Google Scholar 

  59. C.M. Cha, J. Zhu, K. Rizk, M.S. Anand, A comprehensive liquid fuel injection model for CFD simulations of gas turbine combustors. AIAA paper no. 2005-0349 (2005)

    Google Scholar 

  60. S. Subramaniam, Lagrangian–Eulerian methods for multiphase flows. Prog. Energy Combust. Sci. 39, 215–245 (2013)

    Article  Google Scholar 

  61. Y.Z. Zhang, E.H. Kung, D.C. Haworth, A PDF method for multidimensional modeling of HCCI engine combustion: effects of turbulence/chemistry interactions on ignition timing and emissions. Proc. Combust. Inst. 30, 2763–2771 (2005)

    Article  Google Scholar 

  62. S. James, M.S. Anand, S.B. Pope, The Lagrangian PDF transport method for simulations of gas turbine combustor flows. AIAA Paper no. 2002-4017 (2002)

    Google Scholar 

  63. J. Réveillon, L. Vervisch, Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model. Combust. Flame 121, 75–90 (2000)

    Article  Google Scholar 

  64. J. Réveillon, L. Vervisch, Analysis of weakly turbulent dilute-spray flames and spray combustion regimes. J. Fluid Mech. 537, 317–347 (2005)

    Article  MATH  Google Scholar 

  65. H.-W. Ge, E. Gutheil, Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling. Combust. Flame 153, 173–185 (2008)

    Article  Google Scholar 

  66. E.H. Kung, D.C. Haworth, Transported probability density function (tPDF) modeling for direct-injection internal combustion engines. SAE Int. J. Engines 1, 591–606 (2008)

    Article  Google Scholar 

  67. E.H. Kung, PDF-based modeling of autoignition and emissions for advanced direct-injection engines. Ph.D. thesis, The Pennsylvania State University, University Park, 2008

    Google Scholar 

  68. L. Chen, S.Z. Yong, A.F. Ghoniem, Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog. Energy Combust. Sci. 38, 156–214 (2012)

    Article  Google Scholar 

  69. X. Zhao, Transported probability density function methods for coal combustion: toward high temperature Oxy-coal for direct power extraction. Ph.D. thesis, The Pennsylvania State University, University Park, 2014

    Google Scholar 

  70. P. Nakod, G. Krishnamoorthy, M. Sami and S. Orsino, A comparative evaluation of gray and non-gray radiation modeling strategies in oxy-coal combustion simulations. Appl. Therm. Eng. 54, 422–432 (2013)

    Article  Google Scholar 

  71. J.D. Smith, P.J. Smith, S.C. Hill, Parametric sensitivity study of a CFD-based coal combustion model. Am. Inst. Chem. Eng. J. 39, 1668–1679 (1993)

    Article  Google Scholar 

  72. M.M. Baum, P.J. Street, Predicting the combustion behavior of coal particles. Combust. Sci. Technol. 3, 231–243 (1971)

    Article  Google Scholar 

  73. P. Edge, M. Gharebaghi, R. Irons, R. Porter, R.T.J. Porter, M. Pourkashanian, D. Smith, P. Stephenson, A. Williams, Combustion modelling opportunities and challenges for oxy-coal carbon capture technology. Chem. Eng. Res. Des. 89, 1470–1493 (2011)

    Article  Google Scholar 

  74. S. Badzioch, P.G.W. Hawksley, Kinetics of thermal decomposition of pulverized coal particles. Ing. Eng. Chem. Process Des. Dev. 9, 521–530 (1970)

    Article  Google Scholar 

  75. H. Kobayashi, J.B. Howard, A.F. Sarofim, Coal devolatilization at high temperatures. Proc. Combust. Inst. 16, 411–425 (1977)

    Article  Google Scholar 

  76. D. Anthony, J. Howard, H. Hottel, H. Meissner, Rapid devolatilization of pulverized coal. Proc. Combust. Inst. 15, 1303–1317 (1975)

    Article  Google Scholar 

  77. S. Niksa, FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation. Energy Fuels 5, 647–665 (1991)

    Google Scholar 

  78. S. Niksa, FLASHCHAIN theory for rapid coal devolatilization kinetics. 2. Impact of operating conditions. Energy Fuels 5, 665–673 (1991)

    Google Scholar 

  79. S. Niksa, FLASHCHAIN theory for rapid coal devolatilization kinetics. 3. Modeling the behavior of various coals. Energy Fuels 5, 673–683 (1991)

    Google Scholar 

  80. D.M. Grant, R.J. Pugmire, T.H. Fletcher, A.R. Kerstein, Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuels 3, 175–186 (1989)

    Article  Google Scholar 

  81. T.H. Fletcher, A.R. Kerstein, R.J. Pugmire, D.M. Grant, Chemical percolation model for devolatilization: 2. Temperature and heating rate effects on product yields. Energy Fuels 4, 54–60 (1990)

    Google Scholar 

  82. T.H. Fletcher, A.R. Kerstein, R.J. Pugmire, M.S. Solum, D.M. Grant, Chemical percolation model for devolatilization. 3. Direct use of 13C NMR data to predict effects of coal type. Energy Fuels 6, 414–431 (1992)

    Google Scholar 

  83. P.R. Solomon, D.G. Hamblen, R.M. Carangelo, M.A. Serio, G.V. Deshpande, General model of coal devolatilization. Energy Fuels 2, 405–422 (1988)

    Article  Google Scholar 

  84. I. Petersen, J. Werther, Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed. Chem. Eng. Proc. 44, 717–736 (2005)

    Article  Google Scholar 

  85. I.W. Smith, The combustion rates of coal chars: a review. Proc. Combust. Inst. 19, 1045–1065 (1982)

    Article  Google Scholar 

  86. J.J. Murphy, C.R. Shaddix, Combustion kinetics of coal chars in oxygen-enriched environment. Combust. Flame 144, 710–729 (2006)

    Article  Google Scholar 

  87. R. Hurt, J.-K. Sun, M. Lunden, A kinetic model of carbon burnout in pulverized coal combustion. Combust. Flame 113, 181–197 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Modest, M.F., Haworth, D.C. (2016). Chemically Reacting Turbulent Flows. In: Radiative Heat Transfer in Turbulent Combustion Systems. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-27291-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27291-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27289-4

  • Online ISBN: 978-3-319-27291-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics