Skip to main content

Rapid Optimal Lag Order Detection and Parameter Estimation of Standard Long Memory Time Series

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 622))

Abstract

Objective of this paper is to highlight the rapid assessment (in a few minutes) of fractionally differenced standard long memory time series in terms of parameter estimation and optimal lag order assessment. Initially, theoretical aspects of standard fractionally differenced processes with long memory and related state space modelling will be discussed. An efficient mechanism based on theory to estimate parameters and detect optimal lag order in minimizing processing speed and turnaround time is introduced subsequently. The methodology is extended using an available result in literature to present rapid results of an optimal fractionally differenced standard long memory model. Finally, the technique is applied to a couple of real data applications illustrating it’s feasibility and importance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andel, J.: Long memory time series models. Kybernetika 22(2), 105–123 (1986)

    MATH  MathSciNet  Google Scholar 

  2. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall, New York (1979)

    MATH  Google Scholar 

  3. Aoki, M.: State Space Modeling of Time Series. Springer, Berlin (1990)

    Book  Google Scholar 

  4. Beran, J.: Statistics for Long-Memory Processes. Chapman and Hall, New York (1994)

    MATH  Google Scholar 

  5. Beran, J., Feng, Y., Ghosh, S., Kulik, R.: Long-Memory Processes Probabilistic Properties and Statistical Methods. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  6. Box, P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  7. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, New York (1991)

    Book  Google Scholar 

  8. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, New York (1996)

    Book  MATH  Google Scholar 

  9. Chan, N.H., Palma, W.: State space modeling of long-memory processes. Ann. Stat. 26(2), 719–740 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, N.H., Palma, W.: Estimation of long-memory time series models: a Survey of different likelihood-based methods. Adv. Econom. 20(2), 89–121 (2006)

    Article  Google Scholar 

  11. Chen, G., Abraham, B., Peiris, M.S.: Lag Window Estimation of the degree of differencing in fractionally integrated time series models. J. Time Ser. Anal. 15(5), 473–487 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dissanayake, G.S., Peiris, M.S.: Generalized fractional processes with conditional heteroskedasticity. Sri Lankan J. Appl. Stat. 12, 1–12 (2011)

    Google Scholar 

  13. Dissanayake, G.S., Peiris, M.S., Proietti, T.: State space modeling of gegenbauer processes with long memory. computational statistics and data analysis. Ann. Comput. Financ. Econom. (2014) http://dx.doi.org/10.1016/j.csda.2014.09.014

  14. Dissanayake, G.S., Peiris, M.S., Proietti, T.: Estimation of generalized fractionally differenced processes with conditionally heteroskedastic errors. In: Rojas Ruiz, I., Ruiz Garcia, G. (eds.) International Work Conference on Time Series. Proceedings ITISE 2014, pp. 871–890. Copicentro Granada S L (2014). ISBN 978-84-15814-97-9

    Google Scholar 

  15. Durbin, J.: Time Series Analysis by State Space Methods. Number 24 in Oxford Statistical Science Series. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  16. Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4(4), 221–238 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Giraitis, L., Koul, H.L., Surgailis, D.: Large Sample Inference for Long Memory Processes. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  18. Granger, C.W.J., Joyeux, R.: An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1, 15–29 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Grassi, S., Santucci de Magistris, P.: When long memory meets the Kalman filter: a comparative study. Comput. Stat. Data Anal. 76, 301–319 (2014)

    Article  MathSciNet  Google Scholar 

  20. Guegan, D.: How can we define the concept of long memory? An Econometric survey. Econom. Rev. 24(2), 113–149 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Harvey, A.C.: Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  22. Harvey, A.C., Proietti, T.: Readings in Unobserved Components Models. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  23. Hosking, J.R.M.: Fractional Differencing. Biometrika 68, 165–176 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jones, R.H.: Maximum likelihood fitting of ARMA models to time series with missing observations. Technometrics 22, 389–395 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. Am. Soc. Mech. Eng. 83D, 35–45 (1961)

    MathSciNet  Google Scholar 

  26. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Trans. Am. Soc. Mech. Eng. 83, 95–108 (1961)

    MathSciNet  Google Scholar 

  27. Palma, W.: Long Memory Time Series Theory and Methods. Wiley, New Jersey (2007)

    Book  MATH  Google Scholar 

  28. Pearlman, J.G.: An algorithm for the exact likelihood of a high-order autoregressive-moving average process. Biometrika 67(1), 232–233 (1980)

    MATH  MathSciNet  Google Scholar 

  29. Rangarajan, G., Ding, M. (eds.): Processes with Long-Range Correlations. Springer, Berlin (2003)

    Google Scholar 

  30. Reisen, V.: Estimation of the fractional difference parameter in the ARIMA(p, d, q) model using the smoothed periodogram. J. Time Ser. Anal. 15, 315–335 (1994)

    Article  MathSciNet  Google Scholar 

  31. Reisen, V., Abraham, B., Lopes, S.: Estimation of parameters in ARFIMA processes: a simulation study. Commun. Stat. Simul. Comput. 30(4), 787–803 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Teyssiere, G., Kirman, A. (eds.): Long Memory in Economics. Springer, Berlin (2007)

    MATH  Google Scholar 

  33. Wang, X., Smith, K., Hyndman, R.J.: Characteristic-based clustering for time series data. Data Min. Knowl. Discov. 13, 335–364 (2006)

    Article  MathSciNet  Google Scholar 

  34. Whittle, P.: Hypothesis Testing in Time Series. Almqvist and Wiksells, Uppsala (1951)

    MATH  Google Scholar 

  35. Yajima, Y.: On estimation of long-memory time series models. Aust. N. Z. J. Stat. 27(3), 303–320 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Dissanayake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dissanayake, G.S. (2016). Rapid Optimal Lag Order Detection and Parameter Estimation of Standard Long Memory Time Series. In: Huynh, VN., Kreinovich, V., Sriboonchitta, S. (eds) Causal Inference in Econometrics. Studies in Computational Intelligence, vol 622. Springer, Cham. https://doi.org/10.1007/978-3-319-27284-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27284-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27283-2

  • Online ISBN: 978-3-319-27284-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics