Skip to main content

Ordinary Differential Equations: Initial Value Problems

  • Chapter
  • First Online:
Basic Concepts in Computational Physics

Abstract

It is always possible to find an integral representation for initial value problems of ordinary differential equations whenever they are explicit in the n-th derivative of some variable y with respect to some other variable t. Consequently, this chapter starts with simple integrators and extends these single step methods to multi-step methods like Taylor series, linear multi-step methods, and Runge-Kutta methods. The introduction of Butcher tableaus makes the algorithmic description of these methods more transparent. Symplectic integrators are discussed as the methods of choice to solve equations of motion in Hamiltonian systems with energy conservation. The Kepler problem serves then as a benchmark to test simple as well as symplectic integrators. It becomes transparent that due to the accumulative nature of the methodological error of non-symplectic integrators energy conservation in Hamiltonian systems is severely violated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dorn, W.S., McCracken, D.D.: Numerical Methods with Fortran IV Case Studies. Wiley, New York (1972)

    MATH  Google Scholar 

  2. Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Philos. Soc. 43, 50–67 (1947). doi:10.1017/S0305004100023197

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin/Heidelberg (1991)

    Google Scholar 

  4. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin/Heidelberg (1993)

    Google Scholar 

  5. Süli, E., Mayers, D.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  6. Collatz, L.: The Numerical Treatment of Differential Equations. Springer, Berlin/Heidelberg (1960)

    Book  MATH  Google Scholar 

  7. van Winckel, G.: Numerical methods for differential equations. Lecture Notes, Karl-Franzens Universität Graz (2012)

    Google Scholar 

  8. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    Book  MATH  Google Scholar 

  9. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++, 2nd edn. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  10. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Graduate Texts in Mathematics, vol. 60. Springer, Berlin/Heidelberg (1989)

    Google Scholar 

  11. Fetter, A.L., Walecka, J.D.: Theoretical Mechanics of Particles and Continua. Dover, New York (2004)

    MATH  Google Scholar 

  12. Scheck, F.: Mechanics, 5th edn. Springer, Berlin/Heidelberg (2010)

    Book  MATH  Google Scholar 

  13. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, Menlo Park (2013)

    MATH  Google Scholar 

  14. Fließbach, T.: Mechanik, 7th edn. Lehrbuch zur Theoretischen Physik I. Springer, Berlin/Heidelberg (2015)

    MATH  Google Scholar 

  15. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  16. Hairer, E.: Geometrical Integration – Symplectic Integrators. Lecture Notes, TU München (2010)

    Google Scholar 

  17. Levi, D., Oliver, P., Thomova, Z., Winteritz, P. (eds.): Symmetries and Integrability of Difference Equations. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  18. Feng, K., Qin, M.: Symplectic Runge-Kutta methods. In: Feng, K., Qin, M. (eds.) Symplectic Geometric Algorithms for Hamiltonian Systems, pp. 277–364. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  19. Ó’Mathúna, D.: Integrable Systems in Celestial Mechanics. Progress in Mathematical Physics, vol. 51. Birkhäuser Basel, Basel (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stickler, B.A., Schachinger, E. (2016). Ordinary Differential Equations: Initial Value Problems. In: Basic Concepts in Computational Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-27265-8_5

Download citation

Publish with us

Policies and ethics