Skip to main content

Partial Differential Equations

  • Chapter
  • First Online:
Basic Concepts in Computational Physics

Abstract

There are no strict rules for the numerical treatment of partial differential equations. We concentrate here on linear partial differential equations. As an example of elliptic partial differential equations the two-dimensional Poisson equation with Dirichlet boundary conditions is investigated. The application of the finite difference approximation transforms this equation into a set of algebraic equations which can be solved iteratively. The time dependent heat equation is an example of parabolic partial differential equations. The one-dimensional Dirichlet boundary value problem is transformed using the implicit and explicit Euler method into an inhomogeneous system of linear algebraic equations. Stability problems of the explicit Euler method are discussed and demonstrated numerically. The wave equation is a model for hyperbolic partial differential equations. It can be transformed into a system of algebraic equations using, for instance, the explicit Euler method. Again, stability problems connected with this method are discussed and demonstrated numerically. Finally, the quantum mechanical tunneling effect is studied numerically by solving the time dependent Schrödinger equation by means of a Crank-Nicholson scheme which transforms the Schrödinger equation into a system of linear algebraic equations with tridiagonal matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    We note that the electrostatic potentials that we calculated here numerically can also be determined analytically with the method of mirror charges [10].

  2. 2.

    We remember that unitary means that \(UU^{\dag } = U^{\dag }U = \nVdash \).

References

  1. Lapidus, L., Pinder, G.F.: Numerical Solution of Partial Differential Equations. Wiley, New York (1982)

    MATH  Google Scholar 

  2. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  3. Li, T., Qin, T.: Physics and Partial Differential Equations, vol. 1. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  4. Li, T., Qin, T.: Physics and Partial Differential Equations, vol. 2. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  5. Lui, S.H.: Numerical Analysis of Partial Differential Equations. Wiley, New York (2012)

    Google Scholar 

  6. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  7. Gockenbach, M.S.: Understanding and Implementing the Finite Element Method. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  8. Selvadurai, A.: Partial Differential Equations in Mechanics, vol. 2. Springer, Berlin/Heidelberg (2000)

    Book  MATH  Google Scholar 

  9. Sleeman, B.D.: Partial differential equations, poisson equation. In: Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H. (eds.) Encyclopedia of Systems Biology, pp. 1635–1638. Springer, Berlin/Heidelberg (2013)

    Chapter  Google Scholar 

  10. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  11. Greiner, W.: Classical Electrodynamics. Springer, Berlin/Heidelberg (1998)

    Book  MATH  Google Scholar 

  12. Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  13. Cannon, J.R.: The One-Dimensional Heat Equation. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  14. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  15. Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Philos. Soc. 43, 50–67 (1947). doi:10.1017/S0305004100023197

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Zwillinger, D.: Handbook of Differential Equations, 3nd edn. Academic, San Diego (1997)

    MATH  Google Scholar 

  17. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11, 215–234 (1967 [1928])

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Bakhvalov, N.S.: Courant-friedrichs-lewy condition. In: Hazewinkel, M. (ed.) Encyclopaedia of Mathematics. Springer, Berlin/Heidelberg (1994)

    Google Scholar 

  19. Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley, Menlo Park (1985)

    Google Scholar 

  20. Baym, G.: Lectures on Quantum Mechanics. Lecture Notes and Supplements in Physics. The Benjamin/Cummings Publ. Comp., Inc., London/Amsterdam (1969)

    MATH  Google Scholar 

  21. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. I. Wiley, New York (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stickler, B.A., Schachinger, E. (2016). Partial Differential Equations. In: Basic Concepts in Computational Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-27265-8_11

Download citation

Publish with us

Policies and ethics