Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 439 Accesses

Abstract

Most of the experiments presented in this thesis have been performed on the Vienna atom chip setup internally labeled as “Rb2”. The current setup has been developed in Heidelberg starting from 2002 and moved, rebuilt and extended in Vienna from 2006. The first section will be devoted to a brief description of the apparatus. The second section will focus on the techniques used to create, control and characterize magnetic double-well potentials on our atom chip setup. The last section will present the imaging systems used to probe the atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Varian StarCell, 500 L/s.

  2. 2.

    SAES Getters.

  3. 3.

    Fields magnitude larger than 100 G should be achievable but not required in the current experimental cyclee.

  4. 4.

    HP/Agilent 65xx series, excepted for the small Up-Down field, where a bipolar supply (High-Finesse BCS-5/5) is used.

  5. 5.

    Isabellenhütte RUG-Z.

  6. 6.

    Toptical Photonics TA100.

  7. 7.

    The notation \(F=n\) denotes a hyperfine state of the ground state while \(F'=m\) denotes a hyperfine state of the excited state.

  8. 8.

    Toptica Photonics BoosTA.

  9. 9.

    Toptica Photonics DL100.

  10. 10.

    Tabor Electronics, WonderWave Series.

  11. 11.

    Jäger ADwin Pro.

  12. 12.

    National Instruments USB-6218.

  13. 13.

    Simply referred to as: the trap bottom.

  14. 14.

    It is also possible to split the potential by ramping the rf frequency towards the Larmor frequency of the static trap, as was done for example originally in Ref. [58].

  15. 15.

    Keithley 2000 digital Multimeter.

  16. 16.

    Princeton Instruments MicroMax 1024 BFT.

  17. 17.

    Typically, this is true as long as \(I \lesssim I_\mathrm {sat}/10\).

  18. 18.

    It needs approximately 350 scattered photons for a \(^{87}\)Rb atom to be Doppler-shifted by \(\Gamma /2\).

  19. 19.

    Andor iXon+ 897.

References

  1. R. Bücker, Twin-atom beam generation in a one-dimensional Bose gas. Ph.D. thesis, Vienna University of Technology, 2013

    Google Scholar 

  2. P. Krüger, Coherent matter waves near surfaces. Ph.D. thesis, Heidelberg, 2004

    Google Scholar 

  3. S. Wildermuth, One-dimensional Bose-Einstein condensates in micro-traps. Ph.D. thesis, Heidelberg, 2005

    Google Scholar 

  4. H. Gimpel, Magnetische Oberflächenfallen für Atom-Interferomete. Diploma thesis, Heidelberg, 2002

    Google Scholar 

  5. C. Becker, Eine neuartige magneto-optische Falle für Atomchip-Experimente. Diploma thesis, Heidelberg, 2002

    Google Scholar 

  6. S. Haupt, Setup of a new experiment with ultracold 87Rb Atoms: towards quantum information processing on an atom chip. Ph.D. thesis, Heidelberg, 2003

    Google Scholar 

  7. S. Hofferberth, Experiments with ultracold atoms and Bose-Einstein condensated in microtraps near surfaces. Diploma thesis, Heidelberg, 2004

    Google Scholar 

  8. T. Schumm, Bose-Einstein condensates in magnetic double well potentials. Ph.D. thesis, Université Paris 11, 2005

    Google Scholar 

  9. S. Hofferberth, Coherent manipulation of Bose-Einstein condensates with rf adiabatic potentials. Ph.D. thesis, Heidelberg, 2007

    Google Scholar 

  10. T. Betz, Phase correlations of coupled one-dimensional Bose gases. Ph.D. thesis, Vienna University of Technology, 2011

    Google Scholar 

  11. T. Betz, S. Manz, R. Bücker, T. Berrada, Ch. Koller, G. Kazakov, I. Mazets, H.-P. Stimming, A. Perrin, T. Schumm, J. Schmiedmayer, Two-point phase correlations of a one-dimensional Bosonic Josephson junction. Phys. Rev. Lett. 106(2) (2011)

    Google Scholar 

  12. R. Bücker, J. Grond, S. Manz, T. Berrada, T. Betz, C. Koller, U. Hohenester, T. Schumm, A. Perrin, J. Schmiedmayer, Twin-atom beams. Nat. Phys. 7(8), 608–611 (2011)

    Article  Google Scholar 

  13. R. Bücker, T. Berrada, S. van Frank, J.-F. Schaff, T. Schumm, J. Schmiedmayer, G. Jäger, J. Grond, U. Hohenester, Vibrational state inversion of a Bose-Einstein condensate: optimal control and state tomography. J. Phys. B: At. Mol. Opt. Phys. 46(10), 104012 (2013)

    Article  ADS  Google Scholar 

  14. T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff, J. Schmiedmayer, Integrated Mach-Zehnder interferometer for Bose-Einstein condensates. Nat. Commun. 4, 2077 (2013)

    Article  ADS  Google Scholar 

  15. S. Groth, Development, fabrication, and characterisation of atom chips. Ph.D. thesis, University of Heidelberg, 2006

    Google Scholar 

  16. S. Manz, Density correlations of expanding one-dimensional Bose gases. Ph.D. thesis, TU Vienna, 2011

    Google Scholar 

  17. M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, J. Schmiedmayer, Multilayer atom chips for versatile atom micromanipulation. Appl. Phys. Lett. 92(25), 254102 (2008)

    Article  ADS  Google Scholar 

  18. R. Bücker, Fluorescence imaging of ultracold atoms. Diploma thesis, Heidelberg, 2008

    Google Scholar 

  19. R. Bücker, A. Perrin, S. Manz, T. Betz, C.H. Koller, T. Plisson, J. Rottmann, T. Schumm, J. Schmiedmayer, Single-particle-sensitive imaging of freely propagating ultracold atoms. New J. Phys. 11(10), 24 (2009)

    Article  Google Scholar 

  20. S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I.E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, T. Schumm, Two-point density correlations of quasicondensates in free expansion. Phys. Rev. A 81(3), 031610 (2010)

    Article  ADS  Google Scholar 

  21. A. Perrin, R. Bücker, S. Manz, T. Betz, C. Koller, T. Plisson, T. Schumm, J. Schmiedmayer, Hanbury Brown and Twiss correlations across the Bose Einstein condensation threshold. Nat. Phys. 8(3), 195–198 (2012)

    Article  Google Scholar 

  22. C. Koller, Towards the realization of hybrid quantum systems. Ph.D. thesis, Vienna University of Technology, 2012

    Google Scholar 

  23. T. Plisson, Coherent manipulation of Bose-Einstein condensates with microwave and radio frequency fields. Diploma thesis, Télécom Paristech, 2009

    Google Scholar 

  24. M. Brajdic, Entwicklung einer Computersteuerung und ihre Anwendung in einem Experiment zur vereinfachten Bose-Einstein Kondensation in einer Oberflächen- falle. Diploma thesis, Heidelberg, 2003

    Google Scholar 

  25. W. Rohringer, Stochastic optimization in an ultracold atom experiment. Diploma thesis, Vienna University of Technology, 2008

    Google Scholar 

  26. W. Rohringer, R. Bücker, S. Manz, T. Betz, C. Koller, M. Göbel, A. Perrin, J. Schmiedmayer, T. Schumm, Stochastic optimization of a cold atom experiment using a genetic algorithm. Appl. Phys. Lett. 93(26), 264101 (2008)

    Article  ADS  Google Scholar 

  27. R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, C. Henkel, Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002)

    Article  ADS  Google Scholar 

  28. S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, J. Schmiedmayer, Optimized magneto-optical trap for experiments with ultracold atoms near surfaces. Phys. Rev. A 69(3), 030901 (2004)

    Article  ADS  Google Scholar 

  29. A. Haase, D. Cassettari, B. Hessmo, J. Schmiedmayer, Trapping neutral atoms with a wire. Phys. Rev. A 64(4), 043405 (2001)

    Article  ADS  Google Scholar 

  30. S. Schneider, A. Kasper, Ch. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, J. Schmiedmayer, Bose-Einstein condensation in a simple microtrap. Phys. Rev. A 67(2), 023612 (2003)

    Google Scholar 

  31. M. Wilzbach, Aufbau eines Experiments zur miniaturisierten und integrierten Detektion neutraler Atome. Diploma thesis, Heidelberg, 2002

    Google Scholar 

  32. R. Bücker, T. Berrada, S. van Frank, J.-F. Schaff, T. Schumm, J. Schmiedmayer, G. Jäger, J. Grond, U. Hohenester, Vibrational state inversion of a Bose-Einstein condensate: optimal control and state tomography, arXiv:1212.4173. Accessed Dec 2012

  33. S. van Frank, A. Negretti, T. Berrada, R. Bücker, S. Montangero, J.-F. Schaff, T. Schumm, T. Calarco, J. Schmiedmayer, Interferometry with non-classical motional states of a Bose-Einstein condensate, p. 7, Feb 2014

    Google Scholar 

  34. J.F. Scharf, Eine Partitur der atomaren Bewegung. Wiener Zeitung, 2012

    Google Scholar 

  35. D.A. Steck, Rubidium 87 D Line Data. Technical report, 2008

    Google Scholar 

  36. C. Cohen-Tannoudji, Atomes ultrafroids - Piègeage non dissipatif et refroidissement évaporatif, in Notes de Cours au Collège de France, p. II (1996)

    Google Scholar 

  37. E. Burt, R. Ghrist, C. Myatt, M. Holland, E. Cornell, C. Wieman, Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay. Phys. Rev. Lett. 79(3), 337–340 (1997)

    Article  ADS  Google Scholar 

  38. J. Söding, D. Guéry-Odelin, P. Desbiolles, F. Chevy, H. Inamori, J. Dalibard, Three-body decay of a rubidium Bose-Einstein condensate. Appl. Phys. B: Lasers Opt. 69(4), 257–261 (1999)

    Article  ADS  Google Scholar 

  39. J. Schmiedmayer, Guiding and trapping a neutral atom on a wire. Phys. Rev. A 52(1), R13–R16 (1995)

    Article  ADS  Google Scholar 

  40. J. Reichel, W. Hänsel, T. Hänsch, Atomic micromanipulation with magnetic surface traps. Phys. Rev. Lett. 83(17), 3398–3401 (1999)

    Article  ADS  Google Scholar 

  41. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, J. Schmiedmayer, Controlling cold atoms using nanofabricated surfaces: atom chips. Phys. Rev. Lett. 84(20), 4749–4752 (2000)

    Article  ADS  Google Scholar 

  42. W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Bose-Einstein condensation on a microelectronic chip. Nature 413(6855), 498–501 (2001)

    Article  ADS  Google Scholar 

  43. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, C. Zimmermann, Bose-Einstein condensation in a surface microtrap. Phys. Rev. Lett. 87(23), 230401 (2001)

    Article  ADS  Google Scholar 

  44. J. Reichel, V. Vuletic, Atom Chips (Wiley, New York, 2010)

    Google Scholar 

  45. T.H. Bergeman, P. McNicholl, J. Kycia, H. Metcalf, N.L. Balazs, Quantized motion of atoms in a quadrupole magnetostatic trap. J. Opt. Soc. Am. B, 6(11), 2249 (1989)

    Google Scholar 

  46. T. Schumm, Atom chips in the real world: the effects of wire corrugation. EPJD 32, 171–180 (2005)

    Article  ADS  Google Scholar 

  47. S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, I. Bar-Joseph, Atom chips: fabrication and thermal properties. Appl. Phys. Lett. 85(14), 2980 (2004)

    Article  ADS  Google Scholar 

  48. J. Estève, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, A. Aspect, Role of wire imperfections in micromagnetic traps for atoms. Phys. Rev. A 70(4), 043629 (2004)

    Article  ADS  Google Scholar 

  49. P. Krüger, L. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, J. Schmiedmayer, Potential roughness near lithographically fabricated atom chips. Phys. Rev. A 76(6), 063621 (2007)

    Article  ADS  Google Scholar 

  50. J.-B. Trebbia, C. Garrido, Alzar, R. Cornelussen, C. Westbrook, I. Bouchoule, Roughness suppression via rapid current modulation on an atom chip. Phys. Rev. Lett. 98(26), 263201 (2007)

    Google Scholar 

  51. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000)

    Article  ADS  Google Scholar 

  52. H. Perrin, Adiabatic Potentials, Lecture on Adiabatic Potentials, Les houche edition, 2013

    Google Scholar 

  53. O. Zobay, B. Garraway, Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86(7), 1195–1198 (2001)

    Article  ADS  Google Scholar 

  54. Y. Colombe, E. Knyazchyan, O. Morizot, B. Mercier, V. Lorent, H. Perrin, Ultracold atoms confined in rf-induced two-dimensional trapping potentials. Europhys. Lett. (EPL) 67(4), 593–599 (2004)

    Article  ADS  Google Scholar 

  55. I. Lesanovsky, T. Schumm, S. Hofferberth, L. Andersson, P. Krüger, J. Schmiedmayer, Adiabatic radio-frequency potentials for the coherent manipulation of matter waves. Phys. Rev. A 73(3), 033619 (2006)

    Article  ADS  Google Scholar 

  56. O. Morizot, Y. Colombe, V. Lorent, H. Perrin, B. Garraway, Ring trap for ultracold atoms. Phys. Rev. A 74(2), 023617 (2006)

    Article  ADS  Google Scholar 

  57. P.W. Courteille, B. Deh, J. Fortágh, A. Günther, S. Kraft, C. Marzok, S. Slama, C. Zimmermann, Highly versatile atomic micro traps generated by multifrequency magnetic field modulation. J. Phys. B: At. Mol. Opt. Phys. 39(5), 1055–1064 (2006)

    Article  ADS  Google Scholar 

  58. T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Krüger, Matter-wave interferometry in a double well on an atom chip. Nat. Phys. 1(1), 57–62 (2005)

    Article  Google Scholar 

  59. S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, J. Schmiedmayer, Radiofrequency-dressed-state potentials for neutral atoms. Nat. Phys. 2(10), 710–716 (2006)

    Article  Google Scholar 

  60. G.-B. Jo, J.-H. Choi, C.A. Christensen, Y.-R. Lee, T.A. Pasquini, W. Ketterle, D.E. Pritchard, Matter-wave interferometry with phase fluctuating Bose-Einstein condensates. Phys. Rev. Lett. 99(24), 240406 (2007)

    Article  ADS  Google Scholar 

  61. F. Baumgärtner, R.J. Sewell, S. Eriksson, I. Llorente-Garcia, J. Dingjan, J.P. Cotter, E.A. Hinds, Measuring energy differences by BEC interferometry on a chip. Phys. Rev. Lett. 105(24), 243003 (2010)

    Google Scholar 

  62. L. LeBlanc, A. Bardon, J. McKeever, M. Extavour, D. Jervis, J. Thywissen, F. Piazza, A. Smerzi, Dynamics of a tunable superfluid junction. Phys. Rev. Lett. 106(2) (2011)

    Google Scholar 

  63. S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, J. Schmiedmayer, Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449(7160), 324–327 (2007)

    Article  ADS  Google Scholar 

  64. M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. Adu, Smith, E. Demler, J. Schmiedmayer, Relaxation and prethermalization in an isolated quantum system. Science (New York, N.Y.) 337(6100), 1318–1322 (2012)

    Google Scholar 

  65. K. Merloti, R. Dubessy, L. Longchambon, A. Perrin, P.-E. Pottie, V. Lorent, H. Perrin, A two-dimensional quantum gas in a magnetic trap. New J. Phys. 15(3), 033007 (2013)

    Article  ADS  Google Scholar 

  66. J. Shirley, Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138(4B), B979–B987 (1965)

    Article  ADS  Google Scholar 

  67. H. Perrin, Spin and Fields, Lecture on Adiabatic Potentials, Les houche edition, 2013

    Google Scholar 

  68. A. Martin, K. Helmerson, V. Bagnato, G. Lafyatis, D. Pritchard, rf Spectroscopy of trapped neutral atoms. Phys. Rev. Lett. 61(21), 2431–2434 (1988)

    Article  ADS  Google Scholar 

  69. I. Bloch, T. Hänsch, T. Esslinger, Atom laser with a cw output coupler. Phys. Rev. Lett. 82(15), 3008–3011 (1999)

    Article  ADS  Google Scholar 

  70. S. Hofferberth, B. Fischer, T. Schumm, J. Schmiedmayer, I. Lesanovsky, Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation. Phys. Rev. A 76(1), 013401 (2007)

    Article  ADS  Google Scholar 

  71. J. van Es, S. Whitlock, T. Fernholz, A. van Amerongen, N. van Druten, Longitudinal character of atom-chip-based rf-dressed potentials. Phys. Rev. A 77(6), 063623 (2008)

    Article  ADS  Google Scholar 

  72. A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C.I. Westbrook, A. Aspect, A Bose-Einstein condensate of metastable atoms. Science (New York, N.Y.) 292(5516), 461–464 (2001)

    Article  ADS  Google Scholar 

  73. T. Gericke, P. Würtz, D. Reitz, T. Langen, H. Ott, High-resolution scanning electron microscopy of an ultracold quantum gas. Nat. Phys. 4(12), 949–953 (2008)

    Article  Google Scholar 

  74. W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Making, probing and understanding Bose-Einstein condensates, p. 90, Apr 1999

    Google Scholar 

  75. A. David, Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, J. Schmiedmayer, Absorption imaging of ultracold atoms on atom chips. Opt. Exp. 19(9), 8471–8485 (2011)

    Google Scholar 

  76. M Gring, Prethermalization in an isolated many body system. Ph.D. thesis, Vienna University of Technology, 2012

    Google Scholar 

  77. T. Jacqmin, Mesures de corrélations dans un gaz de bosons unidimensionnel sur puce. Ph.D. thesis, Université Paris Sud, 2012

    Google Scholar 

  78. G. Reinaudi, T. Lahaye, Z. Wang, D. Guéry-Odelin, Strong saturation absorption imaging of dense clouds of ultracold atoms. Opt. Lett. 32(21), 3143 (2007)

    Article  ADS  Google Scholar 

  79. R. Bücker, U. Hohenester, T. Berrada, S. van Frank, A. Perrin, S. Manz, T. Betz, J. Grond, T. Schumm, J. Schmiedmayer, Dynamics of parametric matter-wave amplification. Phys. Rev. A 86(1), 013638 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Berrada .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berrada, T. (2016). Experimental Setup and Techniques. In: Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-27233-7_2

Download citation

Publish with us

Policies and ethics