Skip to main content

Anaerobic Digestion of Wastewater and Municipal Sludge to Isolate Potent Methanogen Using BMP Assay

  • Chapter
  • First Online:
Integrated Waste Management in India

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1222 Accesses

Abstract

Municipal sludge production is the inevitable residue generated in enormous amounts by the wastewater treatment plants. Sludge treatments at lower handling costs are the requisites to combat the growing population, rising production of municipal sludge and increasing energy demands. Anaerobic digestion of municipal sludge ranks to be an excellent treatment in view of sludge utilization and biogas production. Numerous researches have been conducted till date to enhance the anaerobic digestion processes of sludge and to upgrade the biogas production. Applications of microbial additives are the most promising technology among the various biogas production enhancement technologies. In the present study, isolation of potent methanogens was carried out from the lab scale reactor containing anaerobically digested municipal sludge. The raw wastewater and municipal sludge (9:1) mixture was anaerobically digested after the inoculation of pure bacterial isolates to screen the potent methanogen through simple and reliable Biochemical Methane Potential (BMP) assays for a period of 45 days. Amongst the nine isolates (DWH1, DWH2, DWH3, DWH4, DWH5, DWH6, DWH7, DWH8 and DWH9), one isolate (DWH9) showed interesting results by producing maximum cumulative biogas (3.64 l kg−1 VS). Molecular characterization of the potent methanogen was carried out and the phylogeny was confirmed by the 16S rDNA sequence, the isolate was confirmed to be Methanobacterium sp. AS1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Henzea M (2008) Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids. Water Res 42(14):3729–3738

    Article  Google Scholar 

  • Alaru M, Olt J, Kukk L, Luna-delRisco M, Lauk R, Noormets M (2011) Methane yield of different energy crops grown in Estonian conditions. Agron Res Biosyst Eng 9(1):13–22

    Google Scholar 

  • Anderson NL, Noble MA, Weissfeld AS, Zabransky RJ (2005) Cumitech 3B, quality systems in the clinical microbiology laboratory. In: Sewell DL (ed). ASM Press, Washington, D.C

    Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (2003) Applications of the anaerobic digestion process. In: Ahring BK (ed) Biomethanation II. Springer, Berlin

    Google Scholar 

  • Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, Van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington (USA)

    Google Scholar 

  • Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    Article  CAS  Google Scholar 

  • Arvind HM (2012) Six biogas plants to process Mysore’s waste, The Times of India, Mysore, 23 Dec 2012. http://timesofindia.indiatimes.com/city/mysore/Six-biogas-plants-to-process-Mysore-waste/articleshow/17726316.cms?referral=PM. Accessed 30 Nov 2014

  • Attar Y, Mhetre ST, Shawale MD (1998) Biogas production enhancement by cellulolytic strains of actinomycetes. Biogas Forum I 72:11–15

    Google Scholar 

  • Azbar N, Keskin T, Yuruyen A (2008) Enhancement of biogas production from olive mill effluent (OME) by co-digestion. Biomass Bioenergy 32:1195–1201

    Article  CAS  Google Scholar 

  • Bennur S (2011) Mysore’s waste to fuel its vehicles, The Hindu, Karnataka, India, 24 Nov 2011, http://www.thehindu.com/todays-paper/tp-national/tp-karnataka/mysores-waste-to-fuel-its-vehicles/article2654849.ece. Accessed 27 Nov 2014

  • Cardinali-Rezende J, Debarry RB, Colturato LFDB, Carneiro EV, Chartone-Souza E, Nascimento AMA (2009) Molecular identification and dynamics of microbial communities in reactor treating organic household waste. Appl Microbiol Biotechnol 84:777–789

    Google Scholar 

  • Clayton RA, Sutton G, Hinkle PS Jr, Bult C, Fields C (1995) Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol 45:595–599

    Article  CAS  Google Scholar 

  • Corless CE, Guiver M, Borrow R, Edwards-Jones V, Kaczmarski EB, Fox AJ (2000) Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol 38:1747–1752

    CAS  Google Scholar 

  • CPCB (Central Pollution Control Board) (2004) Annual Report, 2003104. CPCB, New Delhi

    Google Scholar 

  • Deng WD, Xi DM, Mao HM, Wanapat M (2008) The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep 35:265–274

    Article  CAS  Google Scholar 

  • Doheanyos M, Zabranska J, Jenicek P (1997) Enhancement of sludge anaerobic digestion by using of a special thickening centrifuge. Water Sci Technol 36(1l):145–153

    Google Scholar 

  • Dopazo J (1994) Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. J Mol Evol 38:300–304

    Article  CAS  Google Scholar 

  • El-Mashad HE-MH (2003) Solar thermophilic anaerobic reactor (STAR) for renewable energy production. In: Agrotechnology and Food Sciences. Wageningen University, Wageningen, p 238

    Google Scholar 

  • Garrity G, Holt JG (2001) Euryarchaeota. In: Boone DR, Castenholz RW (eds) Bergeys manual of systematic bacteriology, vol I. Springer, New York, pp 211–354

    Google Scholar 

  • Gary D, Morton R, Tang CC, Horvath R (2007) The effect of the microsludge treatment process on anaerobic digestion performance. In: Water environment federation’s annual technical exhibition and conference, San Diego, USA, 13–17 Oct 2007

    Google Scholar 

  • Geeta GS, Suvarna CV, Jagdeesh KS (1994) Enhanced methane production by sugarcane trash pretreated with Phanerochaete chrysosporium. J Microbiol Biotechnol 9(2):113–117

    CAS  Google Scholar 

  • Gunaseelan VN (2004) Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 26:389–399

    Article  CAS  Google Scholar 

  • Hofman-Bang J, Zheng D, Westermann P, Ahring BK, Raskin L (2003) Molecular ecology of anaerobic systems. Biotechnology 81:151–203

    Google Scholar 

  • Hultman B, Levlin E (1997) Sustainable sludge handling, advanced wastewater treatment Report No. 2. In: Proceedings of a Polish-Swedish seminar, KTH, Stockholm, 30 May 1997, Joint Polish-Swedish Reports, Division of Water Resources Engineering, KTH, TRITA-AMI REPORT 3044, ISBN 91-7170-283-0, KTH 1997, Paper 5

    Google Scholar 

  • Javeriya S, Govind P, Akhter S (2013) A case study of solid waste management in Mysore city. Int J Appl Innov Eng Manage 2(11):290–294

    Google Scholar 

  • Jensen PD, Hardin MT, Clarke WP (2009) Effect of biomass concentration and inoculum source in the rate of anaerobic cellulose solubilization. Bioresour Technol 100(21):5219–5225

    Google Scholar 

  • Johnson DK, Carliel-Marquet CM, Forster CF (2003) An examination of the treatment of iron-dosed waste activated sludge by anaerobic digestion. Environ Technol 24:937–945

    Article  CAS  Google Scholar 

  • Kamyotra JS, Bhardwaj RM (2011) Municipal wastewater management in India. India Infrastructure Report 2011, p 299

    Google Scholar 

  • Kirk D, Bickert W (2004) The use of biochemical methane potential tests to evaluate the digestibility of processed dairy manure. ASABE Paper No. 044066. St. Joseph, Michigan, USA ASABE

    Google Scholar 

  • Kirkeby JT, Birgisdottir H, Hansen TL, Christensen TH, Bhander GS (2006) Evaluation of environmental impacts from municipal solid waste management in the municipality of Aarhus, Denmark (EASEWASTE). Waste Manage Res 24:16–26

    Article  Google Scholar 

  • Krakat N, Westphal A, Schmidt S, Scherer P (2010) Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl Environ Microbiol 76:1842–1850

    Google Scholar 

  • Kusch S, Oechsner H, Jungbluth T (2008) Biogas production with horse dung in solid-phase digestion systems. Bioresour Technol 99:1280–1292

    Article  CAS  Google Scholar 

  • Labatut C, Scott N (2008) Experimental and predicted methane yields from the anaerobic co-digestion of animal manure with complex organic substrates. ASABE Paper No. 085087. St. Joseph, Michigan, USA ASABE

    Google Scholar 

  • Lansing S, Martin JF, Botero RB, da Silva TN, da Silva ED (2010) Methane production in low cost, unheated, plug-flow digesters treating swine manure and used cooking grease. Bioresour Technol 101:4362–4370

    Article  CAS  Google Scholar 

  • Lettinga G, van Velasen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, specially for anaerobic treatment. Biotechnol Bioeng 22:699–734

    Article  CAS  Google Scholar 

  • Leven L, Eriksson ARB, Schnurer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693

    Article  CAS  Google Scholar 

  • Levlin E (1999) Resources recovery from incineration ashes. In: Proceedings of a Polish-Swedish seminar, Stockholm, 24 Aug 1999, Join Polish Swedish Reports Report No. 5, Division of Water Resources Engineering, KTH, TRITA-AMI REPORT 3063, ISBN: 91-7170-439-6, pp 43–53

    Google Scholar 

  • Li JY, Hu BL, Zheng P, Qaisar M, Mei LL (2008) Filamentous granular sludge bulking in a laboratory scale UASB reactor. Bioresour Technol 99:3431–3438

    Article  CAS  Google Scholar 

  • Li R, Chen S, Li X (2010) Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Appl Biochem Biotechnol 160:643–654

    Article  CAS  Google Scholar 

  • Liu Y (2010) Methanobacteriales. In: Handbook of hydrocarbon and lipid microbiology. Springer Berlin, Heidelberg, pp 559–571

    Google Scholar 

  • Lovanh N, Loughrin J, Ruiz-Aguilar G, Sistani K (2008) Evaluation of methane potential from swine slurry with poultry litter amendments. ASABE Paper No. 083989. St. Joseph, Michigan, USA ASABE

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2006) Mikrobielle Evolution und Systematik. In: Madigan MT, Martinko JM, Parker J (eds) Brock Mikrobiologie. Spektrum Akademischer Verlag GmbH Heidelberg, Berlin, pp 471–504

    Google Scholar 

  • McCarty PL (1982) One hundred years of anaerobic treatment. In: Hughes E, Stafford DA, Wheatley BI, Baader W, Lettinga G, Nyns EJ, Verstraete W, Wentworth RL (eds) Anaerobic digestion. Elsevier Biomedical Press BV, Amsterdam, pp 3–22

    Google Scholar 

  • McHugh S, Carton M, Mahony T, O’Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219:297–304

    Article  CAS  Google Scholar 

  • Mes TZD, de Stams AJM, Zeeman G (2003) In: Reith JH, Wijffels RH, Barten H (eds) Biomethane and Biohydrogen. Status and perspectives of biological methane and hydrogen production, pp 58–94

    Google Scholar 

  • Metcalf and Eddy (1991) Wastewater engineering—treatment, disposal and reuse, 3rd edn. McGraw Hill, New York, USA

    Google Scholar 

  • Mignard S, Flandrois JP (2006) 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J Microbiol Methods 67:574–581

    Article  CAS  Google Scholar 

  • Moody L, Burns R, Wu-Haan W, Spajic R(2009) Use of biochemical methane potential (BMP) assays for predicting and enhancing anaerobic digester performance. 44th Croatian and 4th international symposium on agriculture, pp 930–934

    Google Scholar 

  • Mukharje PK (2007) Biogas an energy source for future. Aavishkar magazine, July, pp 20–24

    Google Scholar 

  • Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (2007) Manual of clinical microbiology, 9th edn. American Society for Microbiology Press, Washington, DC

    Google Scholar 

  • Nallathambi GV (1997) Anaerobic digestion of biomass for methane production: a provisional population totals paper 1 of 2011 Series 1, Office of the Registrar General and Census Commissioner, India, Data Product No. 00-001-2011-Cen-Book (E)

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nohra JA, Barrington S, Frigon JC, Guiot SR (2003) In storage psychrophilic anaerobic digestion of swine slurry. Resour Conserv Recycl 38:23–37

    Article  Google Scholar 

  • Nyns EJ (1986) In: Rehm HJ, Reeds G (eds) Biomethanation processes in biotechnology, vol 8. VCH press, Weinheim (Federal Republic of Germany), pp 207–268

    Google Scholar 

  • Patel JB (2001) 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn 6:313–321

    Article  CAS  Google Scholar 

  • Potivichayanon S, Sungmon T, Chaikongmao W, Kamvanin S (2011) Enhancement of biogas production from bakery waste by Pseudomonas aeruginosa. World Acad Sci Eng Technol 80:529–532

    Google Scholar 

  • Raposo F, Fernandez-Cegri V, De la Rubia MA, Borja R, Beline F, Cavinato C, Demirer G, Fernandez B, Fernandez-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Mendez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinck I, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86(8):1088–1098

    Article  CAS  Google Scholar 

  • Rittmann B, McCarty P (2000) Environmental biotechnology: principals and applications. McGraw-Hill, New York, p 768

    Google Scholar 

  • Rulkens WH, Bien JD (2004) Recovery of energy from sludge—comparison of the various options. Water Sci Technol 50(9):213–221

    CAS  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sanders FA, Bloodgood DE (1965) The effect of nitrogen to carbon ratios on anaerobic decomposition. J Water Pollut Contr Fed 37:1741

    CAS  Google Scholar 

  • Santosh Y, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour Technol 95:1–10

    Article  Google Scholar 

  • Sato K, Ochi S, Mizuochi M (2001) Up-to date modification of the anaerobic sludge digestion process introducing a separate sludge digestion mode. Water Sci Technol 44:143–147

    CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2):262–280

    CAS  Google Scholar 

  • Sharma S, Shah KW (2005) Generation and disposal of solid waste in Hoshangabad. In: Proceedings of the second international congress of chemistry and environment, Indore, India, pp 749–751

    Google Scholar 

  • Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, Tennessee, USA

    Google Scholar 

  • Speece R (2001) Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, Tenessee, p 394

    Google Scholar 

  • Switzenbaum MS, Jewell WJ (1980) Anaerobic attached-film expanded bed reactor treatment. J Water Poll Control Fed 52:1953

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Thaniya K, Sohgrathok N (2012) Enhancement of biogas production potential for anaerobic co-digestion of wastewater using decanter cake. Am J Agric Biol Sci 7(4):494–502

    Article  Google Scholar 

  • Tirumale S, Nand K (1994) Influence of anaerobic cellulolytic bacterial consortia in the anaerobic digesters on biogas production. Biogas Forum III 58:12–15

    Google Scholar 

  • Wei Q, Wei W, Cuiping Z, Zhongzhi Z (2010) Biogas recovery from microwave heated sludge by anaerobic digestion. Sci China Tech Sci 53:144–149

    Article  Google Scholar 

  • Wilkie A, Colleran E (1986) Pilot scale digestion of pig slurry supernatant using an upflow anaerobic filter. Environ Lett 7:65–76

    Article  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms - proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  Google Scholar 

  • Woo PCY, Ng KHI, Lau SKP, Yip KT, Fung AMY, Leung KW, Tam DMW, Que TL, Yuen KY (2003) Usefulness of the MicroSeq 500 16S ribosomal DNA-based identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. J Clin Microbiol 41:1996–2001

    Article  CAS  Google Scholar 

  • Xu F, Shi J, Lv W, Yu Z, Li Y (2013) Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Manage 33:26–32

    Article  CAS  Google Scholar 

  • Yadvika A, Santosh A, Sreekrishan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques. Bioresour Technol 95(1):1–10. Energy Information Administration. http://www.eia.doe.gov/emeu/cabs/usa.html. Accessed 27 Nov 2005

  • Zhang T, Fang HHP (2006) Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl Microbiol Biotechnol 70:281–289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balasubramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sulthana, A., Latha, K.C., Balasubramanian, S. (2016). Anaerobic Digestion of Wastewater and Municipal Sludge to Isolate Potent Methanogen Using BMP Assay. In: Prashanthi, M., Sundaram, R. (eds) Integrated Waste Management in India. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-27228-3_7

Download citation

Publish with us

Policies and ethics