Skip to main content

Protein Complex Production in Alternative Prokaryotic Hosts

  • Chapter
  • First Online:
Advanced Technologies for Protein Complex Production and Characterization

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 896))

Abstract

Research for multiprotein expression in nonconventional bacterial and archaeal expression systems aims to exploit particular properties of “alternative” prokaryotic hosts that might make them more efficient than E. coli for particular applications, especially in those areas where more conventional bacterial hosts traditionally do not perform well. Currently, a wide range of products with clinical or industrial application have to be isolated from their native source, often microorganisms whose growth present numerous problems owing to very slow growth phenotypes or because they are unculturable under laboratory conditions. In those cases, transfer of the gene pathway responsible for synthesizing the product of interest into a suitable recombinant host becomes an attractive alternative solution. Despite many efforts dedicated to improving E. coli systems due to low cost, ease of use, and its dominant position as a ubiquitous expression host model, many alternative prokaryotic systems have been developed for heterologous protein expression mostly for biotechnological applications. Continuous research has led to improvements in expression yield through these non-conventional models, including Pseudomonas, Streptomyces and Mycobacterium as alternative bacterial expression hosts. Advantageous properties shared by these systems include low costs, high levels of secreted protein products and their safety of use, with non-pathogenic strains been commercialized. In addition, the use of extremophilic and halotolerant archaea as expression hosts has to be considered as a potential tool for the production of mammalian membrane proteins such as GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernandez FJ, Vega MC (2013) Technologies to keep an eye on: alternative hosts for protein production in structural biology. Curr Opin Struct Biol 23(3):365–373

    Article  CAS  PubMed  Google Scholar 

  2. Migula W (1900) System der Bakterien, vol 2. Gustav Fischer, Jena

    Google Scholar 

  3. Milman G (1987) Expression plasmid containing the lambda PL promoter and cI857 repressor. Methods Enzymol 153:482–491

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Rainey PB, Zhang X-X (2014) Mini-Tn7 vectors for studying post-transcriptional gene expression in Pseudomonas. J Microbiol Methods 107:182–185

    Article  CAS  PubMed  Google Scholar 

  5. van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147(Pt 6):1621–1630

    Article  PubMed  Google Scholar 

  6. Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65(6):2324–2332

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Husken LE, Beeftink R, de Bont JA, Wery J (2001) High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl Microbiol Biotechnol 55(5):571–577

    Article  CAS  PubMed  Google Scholar 

  8. Steigedal M, Valla S (2008) The Acinetobacter sp. chnB promoter together with its cognate positive regulator ChnR is an attractive new candidate for metabolic engineering applications in bacteria. Metab Eng 10(2):121–129

    Article  CAS  PubMed  Google Scholar 

  9. Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42(2):73–91

    Article  CAS  PubMed  Google Scholar 

  10. Filiatrault MJ, Stodghill PV, Wilson J, Butcher BG, Chen H, Myers CR, Cartinhour SW (2013) CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000. RNA Biol 10(2):245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Laurentis W, Leang K, Hahn K, Podemski B, Adam A, Kroschwald S, Carter LG, van Pee K-H, Naismith JH (2006) Preliminary crystallographic characterization of PrnB, the second enzyme in the pyrrolnitrin biosynthetic pathway. Acta Crystallogr Sect F: Struct Biol Cryst Commun 62(Pt 11):1134–1137

    Article  Google Scholar 

  12. Ceremonie H, Buret F, Simonet P, Vogel TM (2006) Natural Pseudomonas sp. strain N3 in artificial soil microcosms. Appl Environ Microbiol 72(4):2385–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez-Garcia E, Nikel PI, Aparicio T, de Lorenzo V (2014) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 13(1):159–159

    Article  PubMed  PubMed Central  Google Scholar 

  14. West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ (1994) Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148(1):81–86

    Article  CAS  PubMed  Google Scholar 

  15. Cronin CN, McIntire WS (1999) PUCP-Nco and pUCP-Nde: Escherichia-Pseudomonas shuttle vectors for recombinant protein expression in Pseudomonas. Anal Biochem 272(1):112–115

    Article  CAS  PubMed  Google Scholar 

  16. Derouazi M, Toussaint B, Quenee L, Epaulard O, Guillaume M, Marlu R, Polack B (2008) High-yield production of secreted active proteins by the Pseudomonas aeruginosa type III secretion system. Appl Environ Microbiol 74(11):3601–3604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krzeslak J, Braun P, Voulhoux R, Cool RH, Quax WJ (2009) Heterologous production of Escherichia coli penicillin G acylase in Pseudomonas aeruginosa. J Biotechnol 142(3–4):250–258

    Article  CAS  PubMed  Google Scholar 

  18. Nikel PI, de Lorenzo V (2014) Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis. N Biotechnol 31(6):562–571

    Article  CAS  PubMed  Google Scholar 

  19. Dammeyer T, Steinwand M, Kruger S-C, Dubel S, Hust M, Timmis KN (2011) Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory. Microb Cell Fact 10:11–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mark G, Morrissey JP, Higgins P, O’Gara F (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56(2):167–177

    Article  CAS  PubMed  Google Scholar 

  21. Hofte M, Altier N (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161(6):464–471

    Article  PubMed  Google Scholar 

  22. Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV, Thomashow LS (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9(1):4–20

    Article  CAS  PubMed  Google Scholar 

  23. Haro M-A, de Lorenzo V (2001) Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotechnol 85(2):103–113

    Article  CAS  PubMed  Google Scholar 

  24. Meijnen JP, de Winde JH, Ruijssenaars HJ (2009) Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12. Appl Environ Microbiol 75(9):2784–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 46(4):337–341

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wellington EM, Stackebrandt E, Sanders D, Wolstrup J, Jorgensen NO (1992) Taxonomic status of Kitasatosporia, and proposed unification with Streptomyces on the basis of phenotypic and 16S rRNA analysis and emendation of Streptomyces Waksman and Henrici 1943, 339AL. Int J Syst Bacteriol 42(1):156–160

    Article  CAS  PubMed  Google Scholar 

  27. Anne J, Maldonado B, Van Impe J, Van Mellaert L, Bernaerts K (2012) Recombinant protein production and streptomycetes. J Biotechnol 158(4):159–167

    Article  CAS  PubMed  Google Scholar 

  28. Anne J, Van Mellaert L (1993) Streptomyces lividans as host for heterologous protein production. FEMS Microbiol Lett 114(2):121–128

    Article  CAS  PubMed  Google Scholar 

  29. Ruckert C, Albersmeier A, Busche T, Jaenicke S, Winkler A, Friethjonsson OH, Hreggviethsson GO, Lambert C, Badcock D, Bernaerts K, Anne J, Economou A, Kalinowski J (2015) Complete genome sequence of Streptomyces lividans TK24. J Biotechnol 199:21–22

    Article  PubMed  Google Scholar 

  30. Anne J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K (2014) Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. Biochim Biophys Acta 1843(8):1750–1761

    Article  CAS  PubMed  Google Scholar 

  31. Palacin A, Parro V, Geukens N, Anne J, Mellado RP (2002) SipY Is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol 184(17):4875–4880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barrett CM, Ray N, Thomas JD, Robinson C, Bolhuis A (2003) Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli. Biochem Biophys Res Commun 304(2):279–284

    Article  CAS  PubMed  Google Scholar 

  33. Wang YY, Fu ZB, Ng KL, Lam CC, Chan AK, Sze KF, Wong WK (2011) Enhancement of excretory production of an exoglucanase from Escherichia coli with phage shock protein A (PspA) overexpression. J Microbiol Biotechnol 21(6):637–645

    CAS  PubMed  Google Scholar 

  34. Lammertyn E, Anne J (1998) Modifications of Streptomyces signal peptides and their effects on protein production and secretion. FEMS Microbiol Lett 160(1):1–10

    Article  CAS  PubMed  Google Scholar 

  35. Kieser TBM, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  36. Lammertyn E, Van Mellaert L, Schacht S, Dillen C, Sablon E, Van Broekhoven A, Anne J (1997) Evaluation of a novel subtilisin inhibitor gene and mutant derivatives for the expression and secretion of mouse tumor necrosis factor alpha by Streptomyces lividans. Appl Environ Microbiol 63(5):1808–1813

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ayadi DZ, Chouayekh H, Mhiri S, Zerria K, Fathallah DM, Bejar S (2007) Expression by streptomyces lividans of the rat alpha integrin CD11b A-domain as a secreted and soluble recombinant protein. J Biomed Biotechnol 2007(1):54327

    PubMed  PubMed Central  Google Scholar 

  38. Hatanaka T, Onaka H, Arima J, Uraji M, Uesugi Y, Usuki H, Nishimoto Y, Iwabuchi M (2008) pTONA5: a hyperexpression vector in Streptomycetes. Protein Expr Purif 62(2):244–248

    Article  CAS  PubMed  Google Scholar 

  39. Rowe CJ, Cortés J, Gaisser S, Staunton J, Leadlay PF (1998) Construction of new vectors for high-level expression in actinomycetes. Gene 216(1):215–223

    Article  CAS  PubMed  Google Scholar 

  40. Wang W, Li X, Wang J, Xiang S, Feng X, Yang K (2013) An engineered strong promoter for streptomycetes. Appl Environ Microbiol 79(14):4484–4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M (2004) Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci U S A 101(39):14031–14035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murakami T, Holt TG, Thompson CJ (1989) Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol 171(3):1459–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lussier FX, Denis F, Shareck F (2010) Adaptation of the highly productive T7 expression system to Streptomyces lividans. Appl Environ Microbiol 76(3):967–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pozidis C, Lammertyn E, Politou AS, Anne J, Tsiftsoglou AS, Sianidis G, Economou A (2001) Protein secretion biotechnology using Streptomyces lividans: large-scale production of functional trimeric tumor necrosis factor alpha. Biotechnol Bioeng 72(6):611–619

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Wang WC, Li Y (2004) Cloning, expression, and purification of soluble human interleukin-4 receptor in Streptomyces. Protein Expr Purif 36(1):139–145

    Article  CAS  PubMed  Google Scholar 

  46. Qi X, Jiang R, Yao C, Zhang R, Li Y (2008) Expression, purification, and characterization of C-terminal amidated glucagon in Streptomyces lividans. J Microbiol Biotechnol 18(6):1076–1080

    CAS  PubMed  Google Scholar 

  47. Zhu Y, Wang L, Du Y, Wang S, Yu T, Hong B (2011) Heterologous expression of human interleukin-6 in Streptomyces lividans TK24 using novel secretory expression vectors. Biotechnol Lett 33(2):253–261

    Article  CAS  PubMed  Google Scholar 

  48. Chaudhary AK, Dhakal D, Sohng JK (2013) An insight into the “-omics” based engineering of streptomycetes for secondary metabolite overproduction. Biomed Res Int 2013:968518

    Article  PubMed  PubMed Central  Google Scholar 

  49. D’Huys PJ, Lule I, Van Hove S, Vercammen D, Wouters C, Bernaerts K, Anne J, Van Impe JF (2011) Amino acid uptake profiling of wild type and recombinant Streptomyces lividans TK24 batch fermentations. J Biotechnol 152(4):132–143

    Article  PubMed  Google Scholar 

  50. Huang J, Lih C-J, Pan K-H, Cohen SN (2001) Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15(23):3183–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Okamoto S, Lezhava A, Hosaka T, Okamoto-Hosoya Y, Ochi K (2003) Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J Bacteriol 185(2):601–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanchez C, Zhu L, Brana AF, Salas AP, Rohr J, Mendez C, Salas JA (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci U S A 102(2):461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salas JA, Mendez C (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 15(5):219–232

    Article  CAS  PubMed  Google Scholar 

  54. Shinde PB, Han AR, Cho J, Lee SR, Ban YH, Yoo YJ, Kim EJ, Kim E, Song MC, Park JW, Lee DG, Yoon YJ (2013) Combinatorial biosynthesis and antibacterial evaluation of glycosylated derivatives of 12-membered macrolide antibiotic YC-17. J Biotechnol 168(2):142–148

    Article  CAS  PubMed  Google Scholar 

  55. Napan K, Zhang S, Morgan W, Anderson T, Takemoto JY, Zhan J (2014) Synergistic actions of tailoring enzymes in pradimicin biosynthesis. Chembiochem Eur J Chem Biol 15(15):2289–2296

    Article  CAS  Google Scholar 

  56. Vitoria M, Granich R, Gilks CF, Gunneberg C, Hosseini M, Were W, Raviglione M, De Cock KM (2009) The global fight against HIV/AIDS, tuberculosis, and malaria: current status and future perspectives. Am J Clin Pathol 131(6):844–848

    Article  PubMed  Google Scholar 

  57. Wright A, Zignol M, Van Deun A, Falzon D, Gerdes SR, Feldman K, Hoffner S, Drobniewski F, Barrera L, van Soolingen D, Boulabhal F, Paramasivan CN, Kam KM, Mitarai S, Nunn P, Raviglione M, Global Project on Anti-Tuberculosis Drug Resistance S (2009) Epidemiology of antituberculosis drug resistance 2002–07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet 373(9678):1861–1873

    Article  PubMed  Google Scholar 

  58. Parish T, Brown AC (2009) Mycobacteria protocols. Methods in Molecular Biology, vol 465. Humana Press, New York

    Book  Google Scholar 

  59. Goldstone RM, Moreland NJ, Bashiri G, Baker EN, Shaun Lott J (2008) A new Gateway vector and expression protocol for fast and efficient recombinant protein expression in Mycobacterium smegmatis. Protein Expr Purif 57(1):81–87

    Article  CAS  PubMed  Google Scholar 

  60. Newton-Foot M, Gey van Pittius NC (2013) The complex architecture of mycobacterial promoters. Tuberculosis 93(1):60–74

    Article  CAS  PubMed  Google Scholar 

  61. Al-Zarouni M, Dale JW (2002) Expression of foreign genes in Mycobacterium bovis BCG strains using different promoters reveals instability of the hsp60 promoter for expression of foreign genes in Mycobacterium bovis BCG strains. Tuberculosis 82(6):283–291

    Article  PubMed  Google Scholar 

  62. Nascimento IP, Dias WO, Mazzantini RP, Miyaji EN, Gamberini M, Quintilio W, Gebara VC, Cardoso DF, Ho PL, Raw I, Winter N, Gicquel B, Rappuoli R, Leite LC (2000) Recombinant Mycobacterium bovis BCG expressing pertussis toxin subunit S1 induces protection against an intracerebral challenge with live Bordetella pertussis in mice. Infect Immun 68(9):4877–4883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ly MA, Liew EF, Le NB, Coleman NV (2011) Construction and evaluation of pMycoFos, a fosmid shuttle vector for Mycobacterium spp. with inducible gene expression and copy number control. J Microbiol Methods 86(3):320–326

    Article  CAS  PubMed  Google Scholar 

  64. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF et al (1991) New use of BCG for recombinant vaccines. Nature 351(6326):456–460

    Article  CAS  PubMed  Google Scholar 

  65. Joseph SV, Madhavilatha GK, Kumar RA, Mundayoor S (2012) Comparative analysis of mycobacterial truncated hemoglobin promoters and the groEL2 promoter in free-living and intracellular mycobacteria. Appl Environ Microbiol 78(18):6499–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hatfull GF (2014) Molecular genetics of mycobacteriophages. Microbiol Spectr 2(2):1–36

    PubMed  PubMed Central  Google Scholar 

  67. Eitson JL, Medeiros JJ, Hoover AR, Srivastava S, Roybal KT, Ainsa JA, Hansen EJ, Gumbo T, van Oers NS (2012) Mycobacterial shuttle vectors designed for high-level protein expression in infected macrophages. Appl Environ Microbiol 78(19):6829–6837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Williams KJ, Joyce G, Robertson BD (2010) Improved mycobacterial tetracycline inducible vectors. Plasmid 64(2):69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guilhot C, Gicquel B, Martin C (1992) Temperature-sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol Lett 77(1–3):181–186

    Article  CAS  PubMed  Google Scholar 

  70. Gormley EP, Davies J (1991) Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis. J Bacteriol 173(21):6705–6708

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bardarov S, Kriakov J, Carriere C, Yu S, Vaamonde C, McAdam RA, Bloom BR, Hatfull GF, Jacobs WR Jr (1997) Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 94(20):10961–10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CM, Luirink J, Bitter W (2012) General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A 109(28):11342–11347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pardini M, Giannoni F, Palma C, Iona E, Cafaro A, Brunori L, Rinaldi M, Fazio VM, Laguardia ME, Carbonella DC, Magnani M, Ensoli B, Fattorini L, Cassone A (2006) Immune response and protection by DNA vaccines expressing antigen 85B of Mycobacterium tuberculosis. FEMS Microbiol Lett 262(2):210–215

    Article  CAS  PubMed  Google Scholar 

  74. Parikh A, Kumar D, Chawla Y, Kurthkoti K, Khan S, Varshney U, Nandicoori VK (2013) Development of a new generation of vectors for gene expression, gene replacement, and protein-protein interaction studies in mycobacteria. Appl Environ Microbiol 79(5):1718–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chang Y, Mead D, Dhodda V, Brumm P, Fox BG (2009) One-plasmid tunable coexpression for mycobacterial protein-protein interaction studies. Protein Sci Publ Protein Soc 18(11):2316–2325

    Article  CAS  Google Scholar 

  76. Oren A (2014) Taxonomy of halophilic Archaea: current status and future challenges. Extremophiles 18(5):825–834

    Article  PubMed  Google Scholar 

  77. Soppa J (2006) From genomes to function: haloarchaea as model organisms. Microbiology 152(Pt 3):585–590

    Article  CAS  PubMed  Google Scholar 

  78. Berquist BR, Müller JA, DasSarma S (2006) Genetic systems for halophilic archaea, vol 35, Methods in microbiology. Academic Press, Cambridge, MA

    Google Scholar 

  79. Cline SW, Schalkwyk LC, Doolittle WF (1989) Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol 171(9):4987–4991

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dyall-Smith M (2009) The halohandbook: protocols for haloarchaeal genetics (version 7.2). Available online at: http://www.haloarchaea.com/resources/halohandbook/

  81. Gregor D, Pfeifer F (2005) In vivo analyses of constitutive and regulated promoters in halophilic archaea. Microbiology 151(Pt 1):25–33

    Article  CAS  PubMed  Google Scholar 

  82. Bartus CL, Jaakola V-P, Reusch R, Valentine HH, Heikinheimo P, Levay A, Potter LT, Heimo H, Goldman A, Turner GJ (2003) Downstream coding region determinants of bacterio-opsin, muscarinic acetylcholine receptor and adrenergic receptor expression in Halobacterium salinarum. BBA Biomembr 1610(1):109–123

    Article  CAS  Google Scholar 

  83. Bleiholder A, Frommherz R, Teufel K, Pfeifer F (2012) Expression of multiple tfb genes in different Halobacterium salinarum strains and interaction of TFB with transcriptional activator GvpE. Arch Microbiol 194(4):269–279

    Article  CAS  PubMed  Google Scholar 

  84. Kixmuller D, Greie JC (2012) Construction and characterization of a gradually inducible expression vector for Halobacterium salinarum, based on the kdp promoter. Appl Environ Microbiol 78(7):2100–2105

    Article  PubMed  PubMed Central  Google Scholar 

  85. Luttenberg B, Wolff EK, Engelhard M (1998) Heterologous coexpression of the blue light receptor psRII and its transducer pHtrII from Natronobacterium pharaonis in the Halobacterium salinarium strain Pho81/w restores negative phototaxis. FEBS Lett 426(1):117–120

    Article  CAS  PubMed  Google Scholar 

  86. Chizhov I, Schmies G, Seidel R, Sydor JR, Luttenberg B, Engelhard M (1998) The photophobic receptor from Natronobacterium pharaonis: temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophys J 75(2):999–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kamekura M, Dyall-Smith ML, Upasani V, Ventosa A, Kates M (1997) Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47(3):853–857

    Article  CAS  PubMed  Google Scholar 

  88. Bogomolni RA, Stoeckenius W, Szundi I, Perozo E, Olson KD, Spudich JL (1994) Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I. Proc Natl Acad Sci U S A 91(21):10188–10192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shand RF, Betlach MC (1991) Expression of the bop gene cluster of Halobacterium halobium is induced by low oxygen tension and by light. J Bacteriol 173(15):4692–4699

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ferrando-May E, Brustmann B, Oesterhelt D (1993) A C-terminal truncation results in high-level expression of the functional photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium. Mol Microbiol 9(5):943–953

    Article  CAS  PubMed  Google Scholar 

  91. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619

    Article  CAS  Google Scholar 

  92. Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73(19):6058–6065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kirk RG, Ginzburg M (1972) Ultrastructure of two species of halobacterium. J Ultrastruct Res 41(1):80–94

    Article  CAS  PubMed  Google Scholar 

  94. Li Z, Loh XJ (2015) Water soluble polyhydroxyalkanoates: future materials for therapeutic applications. Chem Soc Rev 44(10):2865–2879

    Article  CAS  PubMed  Google Scholar 

  95. Rehm BH, Steinbuchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25(1–3):3–19

    Article  CAS  PubMed  Google Scholar 

  96. Liebergesell M, Steinbuchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem/FEBS 209(1):135–150

    Article  CAS  Google Scholar 

  97. Cline SW, Lam WL, Charlebois RL, Schalkwyk LC, Doolittle WF (1989) Transformation methods for halophilic archaebacteria. Can J Microbiol 35(1):148–152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors received funding from the Spanish Ministry of Science and Innovation grant CTQ2015-66206-C2-2-R and the European Community’s Seventh Framework Programme (FP7/2007–2013) for the ComplexINC Project under grant agreement N° 279039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cristina Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gómez, S., López-Estepa, M., Fernández, F.J., Vega, M.C. (2016). Protein Complex Production in Alternative Prokaryotic Hosts. In: Vega, M. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-319-27216-0_8

Download citation

Publish with us

Policies and ethics