Skip to main content

Alternative Eukaryotic Expression Systems for the Production of Proteins and Protein Complexes

  • Chapter
  • First Online:
Advanced Technologies for Protein Complex Production and Characterization

Abstract

Besides the most established expression hosts, several eukaryotic microorganisms and filamentous fungi have also been successfully used as platforms for the production of foreign proteins. Filamentous fungi and Dictyostelium discoideum are two prominent examples. Filamentous fungi, typically Aspergillus and Trichoderma, are usually employed for the industrial production of enzymes and secondary metabolites for food processing, pharmaceutical drugs production, and textile and paper applications, with multiple products already accepted for their commercialization. The low cost of culture medium components, high secretion capability directly to the extracellular medium, and the intrinsic ability to produce post-translational modifications similar to the mammalian type, have promoted this group as successful hosts for the expression of proteins, including examples from phylogenetically distant groups: humans proteins such as IL-2, IL-6 or epithelial growth factor; α-galactosidase from plants; or endoglucanase from Cellulomonas fimi, among others. D. discoideum is a social amoeba that can be used as an expression platform for a variety of proteins, which has been extensively illustrated for cytoskeletal proteins. New vectors for heterologous expression in D. discoideum have been recently developed that might increase the usefulness of this system and expand the range of protein classes that can be tackled. Continuous developments are ongoing to improve strains, promoters, production and downstream processes for filamentous fungi, D. discoideum, and other alternative eukaryotic hosts. Either for the overexpression of individual genes, or in the coexpression of multiples genes, this chapter illustrates the enormous possibilities offered by these groups of eukaryotic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernandez FJ, Vega MC (2013) Technologies to keep an eye on: alternative hosts for protein production in structural biology. Curr Opin Struct Biol 23(3):365–373

    Article  CAS  PubMed  Google Scholar 

  2. Conesa A, Punt PJ, van Luijk N, van den Hondel CA (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33(3):155–171

    Article  CAS  PubMed  Google Scholar 

  3. Radzio R, Kück U (1997) Synthesis of biotechnologically relevant heterologous proteins in filamentous fungi. Proccess Biochem 32(6):529–539

    Article  CAS  Google Scholar 

  4. Meyer V (2008) Genetic engineering of filamentous fungi – progress, obstacles and future trends. Biotechnol Adv 26(2):177–185

    Article  CAS  PubMed  Google Scholar 

  5. Su X, Schmitz G, Zhang M, Mackie RI, Cann IK (2012) Heterologous gene expression in filamentous fungi. Adv Appl Microbiol 81:1–61

    Article  CAS  PubMed  Google Scholar 

  6. Archer DB (2000) Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11(5):478–483

    Article  CAS  PubMed  Google Scholar 

  7. Nevalainen KM, Te’o VS, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23(9):468–474

    Article  CAS  PubMed  Google Scholar 

  8. Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganisms – a review. Regul Toxicol Pharmacol: RTP 45(2):144–158

    Article  CAS  PubMed  Google Scholar 

  9. Adrio JL, Demain AL (2003) Fungal biotechnology. Int Microbiol: Off J Span Soc Microbiol 6(3):191–199

    Article  CAS  Google Scholar 

  10. Mirón J, Vázquez JA, González P, Murado MA (2010) Enhancement glucose oxidase production by solid-state fermentation of Aspergillus niger on polyurethane foams using mussel processing wastewaters. Enzym Microb Technol 46(1):21–27

    Article  Google Scholar 

  11. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    Article  CAS  PubMed  Google Scholar 

  12. Dhillon GS, Brar SK, Verma M, Tyagi RD (2011) Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem Eng J 54(2):83–92

    Article  CAS  Google Scholar 

  13. Kumar S, Srivastava N, Gupta BS, Kuhad RC, Gomes J (2014) Lovastatin production by Aspergillus terreus using lignocellulose biomass in large scale packed bed reactor. Food Bioprod Process 92(4):416–424

    Article  CAS  Google Scholar 

  14. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CH, Perrone G, Seifert KA, Susca A, Tanney JB, Varga J, Kocsube S, Szigeti G, Yaguchi T, Frisvad JC (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raper KBF, Fennell DI (1965) The genus Aspergillus. Williams & Wilkins, Baltimore

    Google Scholar 

  16. Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, Du G, Chen J (2013) Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biotechnol 97(14):6113–6127

    Article  CAS  PubMed  Google Scholar 

  17. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27(1):53–75

    Article  CAS  PubMed  Google Scholar 

  18. Samuels GJ, Ismaiel A, Mulaw TB, Szakacs G, Druzhinina IS, Kubicek CP, Jaklitsch WM (2012) The longibrachiatum clade of trichoderma: a revision with new species. Fungal Divers 55(1):77–108

    Article  PubMed  PubMed Central  Google Scholar 

  19. Person CH (1794) Disposita mehodica fungorum. Römer’s N Mag Bot 1:81–128

    Google Scholar 

  20. Tulasne LR, Tulasne C (1865) Selecta fungorum carpologia. Jussu, Paris

    Google Scholar 

  21. Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100(8):923–935

    Article  Google Scholar 

  22. Schmoll M, Franchi L, Kubicek CP (2005) Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4(12):1998–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759

    Article  CAS  PubMed  Google Scholar 

  24. Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh A, Taylor LE 2nd, Vander Wall TA, Linger J, Himmel ME, Podkaminer K, Adney WS, Decker SR (2015) Heterologous protein expression in Hypocrea jecorina: a historical perspective and new developments. Biotechnol Adv 33(1):142–154

    Article  CAS  PubMed  Google Scholar 

  26. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology 158(Pt 1):58–68

    Article  CAS  PubMed  Google Scholar 

  27. Unkles SE, Valiante V, Mattern DJ, Brakhage AA (2014) Synthetic biology tools for bioprospecting of natural products in eukaryotes. Chem Biol 21(4):502–508

    Article  CAS  PubMed  Google Scholar 

  28. Mach RL, Zeilinger S (2003) Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol 60(5):515–522

    Article  CAS  PubMed  Google Scholar 

  29. Pahirulzaman KA, Williams K, Lazarus CM (2012) A toolkit for heterologous expression of metabolic pathways in Aspergillus oryzae. Methods Enzymol 517:241–260

    Article  CAS  PubMed  Google Scholar 

  30. Dawe AL, Willins DA, Morris NR (2000) Increased transformation efficiency of Aspergillus nidulans protoplasts in the presence of dithiothreitol. Anal Biochem 283(1):111–112

    Article  CAS  PubMed  Google Scholar 

  31. Ozeki K, Kyoya F, Hizume K, Kanda A, Hamachi M, Nunokawa Y (1994) Transformation of intact Aspergillus niger by electroporation. Biosci Biotechnol Biochem 58(12):2224–2227

    Article  CAS  PubMed  Google Scholar 

  32. Gouka RJ, Gerk C, Hooykaas PJ, Bundock P, Musters W, Verrips CT, de Groot MJ (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17(6):598–601

    Article  CAS  PubMed  Google Scholar 

  33. Herzog RW, Daniell H, Singh NK, Lemke PA (1996) A comparative study on the transformation of Aspergillus nidulans by microprojectile bombardment of conidia and a more conventional procedure using protoplasts treated with polyethyleneglycol. Appl Microbiol Biotechnol 45(3):333–337

    Article  CAS  Google Scholar 

  34. Miyauchi S, Te’o VS Jr, Bergquist PL, Nevalainen KM (2013) Expression of a bacterial xylanase in Trichoderma reesei under the egl2 and cbh2 glycosyl hydrolase gene promoters. New Biotechnol 30(5):523–530

    Article  CAS  Google Scholar 

  35. Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16(1):31–44

    Article  CAS  PubMed  Google Scholar 

  36. Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30(5):1119–1139

    Article  CAS  PubMed  Google Scholar 

  37. Jorgensen MS, Skovlund DA, Johannesen PF, Mortensen UH (2014) A novel platform for heterologous gene expression in Trichoderma reesei (Teleomorph Hypocrea jecorina). Microb Cell Factories 13(1):33

    Article  Google Scholar 

  38. Jin FJ, Maruyama J, Juvvadi PR, Arioka M, Kitamoto K (2004) Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol Lett 239(1):79–85

    Article  CAS  PubMed  Google Scholar 

  39. Navarrete K, Roa A, Vaca I, Espinosa Y, Navarro C, Chavez R (2009) Molecular characterization of the niaD and pyrG genes from Penicillium camemberti, and their use as transformation markers. Cell Mol Biol Lett 14(4):692–702

    Article  CAS  PubMed  Google Scholar 

  40. Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J (2013) Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 31(8):1562–1574

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genom: MGG 275(5):460–470

    Article  CAS  Google Scholar 

  42. Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172(3):1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20(5):200–206

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, Ridgway D, Gu T, Moo-Young M (2005) Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv 23(2):115–129

    Article  CAS  PubMed  Google Scholar 

  45. He R, Zhang C, Guo W, Wang L, Zhang D, Chen S (2013) Construction of a plasmid for heterologous protein expression with a constitutive promoter in Trichoderma reesei. Plasmid 70(3):425–429

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Wang J, Wang S, Xing M, Yu S, Liu G (2012) Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters. Microb Cell Factories 11:84

    Article  Google Scholar 

  47. Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61(2):155–164

    Article  CAS  PubMed  Google Scholar 

  48. Zou G, Shi S, Jiang Y, van den Brink J, de Vries RP, Chen L, Zhang J, Ma L, Wang C, Zhou Z (2012) Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb Cell Factories 11:21

    Article  CAS  Google Scholar 

  49. Lloyd AT, Sharp PM (1991) Codon usage in Aspergillus nidulans. Mol Gen Genet MGG 230(1-2):288–294

    Article  CAS  PubMed  Google Scholar 

  50. Nabiyouni M, Prakash A, Fedorov A (2013) Vertebrate codon bias indicates a highly GC-rich ancestral genome. Gene 519(1):113–119

    Article  CAS  PubMed  Google Scholar 

  51. Nelson G, Kozlova-Zwinderman O, Collis AJ, Knight MR, Fincham JR, Stanger CP, Renwick A, Hessing JG, Punt PJ, van den Hondel CA, Read ND (2004) Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Mol Microbiol 52(5):1437–1450

    Article  CAS  PubMed  Google Scholar 

  52. Fleissner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87(4):1255–1270

    Article  CAS  PubMed  Google Scholar 

  53. Zhang G, Zhu Y, Wei D, Wang W (2014) Enhanced production of heterologous proteins by the filamentous fungus Trichoderma reesei via disruption of the alkaline serine protease SPW combined with a pH control strategy. Plasmid 71:16–22

    Article  CAS  PubMed  Google Scholar 

  54. Wiebe MG (2003) Stable production of recombinant proteins in filamentous fungi – problems and improvements. Mycologist 17(3):140–144

    Article  Google Scholar 

  55. Eneyskaya EV, Kulminskaya AA, Savel’ev AN, Savel’eva NV, Shabalin KA, Neustroev KN (1999) Acid protease from Trichoderma reesei: limited proteolysis of fungal carbohydrases. Appl Microbiol Biotechnol 52(2):226–231

    Article  CAS  Google Scholar 

  56. Wiebe MG, Karandikar A, Robson GD, Trinci AP, Candia JL, Trappe S, Wallis G, Rinas U, Derkx PM, Madrid SM, Sisniega H, Faus I, Montijn R, van den Hondel CA, Punt PJ (2001) Production of tissue plasminogen activator (t-PA) in Aspergillus niger. Biotechnol Bioeng 76(2):164–174

    Article  CAS  PubMed  Google Scholar 

  57. Punt PJ, Schuren FH, Lehmbeck J, Christensen T, Hjort C, van den Hondel CA (2008) Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 45(12):1591–1599

    Article  CAS  PubMed  Google Scholar 

  58. Mattern IE, van Noort JM, van den Berg P, Archer DB, Roberts IN, van den Hondel CA (1992) Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol Gen Genet 234(2):332–336

    Article  CAS  PubMed  Google Scholar 

  59. Moralejo FJ, Cardoza RE, Gutierrez S, Lombrana M, Fierro F, Martin JF (2002) Silencing of the aspergillopepsin B (pepB) gene of Aspergillus awamori by antisense RNA expression or protease removal by gene disruption results in a large increase in thaumatin production. Appl Environ Microbiol 68(7):3550–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Archer DB, Peberdy JF (1997) The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol 17(4):273–306

    Article  CAS  PubMed  Google Scholar 

  61. Gouka RJ, Punt PJ, van den Hondel CA (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47(1):1–11

    Article  CAS  PubMed  Google Scholar 

  62. Conesa A, Jeenes D, Archer DB, van den Hondel CA, Punt PJ (2002) Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol 68(2):846–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lombrana M, Moralejo FJ, Pinto R, Martin JF (2004) Modulation of Aspergillus awamori thaumatin secretion by modification of bipA gene expression. Appl Environ Microbiol 70(9):5145–5152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Conesa A, van den Hondel CA, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66(7):3016–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4(2):475–479

    CAS  PubMed  PubMed Central  Google Scholar 

  66. van Hartingsveldt W, Mattern IE, van Zeijl CM, Pouwels PH, van den Hondel CA (1987) Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet 206(1):71–75

    Article  PubMed  Google Scholar 

  67. Punt PJ, van den Hondel CA (1992) Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers. Methods Enzymol 216:447–457

    Article  CAS  PubMed  Google Scholar 

  68. Wunsch C, Mundt K, Li SM (2015) Targeted production of secondary metabolites by coexpression of non-ribosomal peptide synthetase and prenyltransferase genes in Aspergillus. Appl Microbiol Biotechnol 99:4213–4223

    Article  CAS  PubMed  Google Scholar 

  69. Kruszewska JS, Butterweck AH, Kurzatkowski W, Migdalski A, Kubicek CP, Palamarczyk G (1999) Overexpression of the Saccharomyces cerevisiae mannosylphosphodolichol synthase-encoding gene in Trichoderma reesei results in an increased level of protein secretion and abnormal cell ultrastructure. Appl Environ Microbiol 65(6):2382–2387

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Beck PJ, Orlean P, Albright C, Robbins PW, Gething MJ, Sambrook JF (1990) The Saccharomyces cerevisiae DPM1 gene encoding dolichol-phosphate-mannose synthase is able to complement a glycosylation-defective mammalian cell line. Mol Cell Biol 10(9):4612–4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kubicek CP, Panda T, Schreferl-kunar G, Gruber F, Messner R (1987) O-linked but not N-linked glycosylation is necessary for the secretion of endoglucanases I and II by Trichoderma reesei. Can J Microbiol 33(8):698–703

    Article  CAS  Google Scholar 

  72. Kruszewska JS, Palamarczyk G, Kubicek CP (1990) Stimulation of exoprotein secretion by choline and Tween 80 in Trichoderma reesei QM 9414 correlates with increased activities of dolichol phosphate mannose synthase. J Gen Microbiol 136(7):1293–1298

    Article  CAS  Google Scholar 

  73. Nyyssönen E, Keränen S, Penttilä M, Demolder J, Contreras R (1995) Protein production by the filamentous fungus Trichoderma reesei: secretion of active antibody molecules. Can J Bot 73(S1):885–890

    Article  Google Scholar 

  74. Mach RL, Schindler M, Kubicek CP (1994) Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr Genet 25(6):567–570

    Article  CAS  PubMed  Google Scholar 

  75. Gruber F, Visser J, Kubicek C, de Graaff L (1990) Cloning of the Trichoderma reesei pyrG gene and its use as a homologous marker for a high-frequency transformation system. Curr Genet 18(5):447–451

    Article  CAS  Google Scholar 

  76. Kubicek-Pranz EM, Gruber F, Kubicek CP (1991) Transformation of Trichoderma reesei with the cellobiohydrolase II gene as a means for obtaining strains with increased cellulase production and specific activity. J Biotechnol 20(1):83–94

    Article  CAS  Google Scholar 

  77. Kruszewka J, Messner R, Kubicek CP, Palamarczyk G (1989) O-Glycosylation of proteins by membrane fractions of Trichoderma reesei QM 9414. J Gen Microbiol 135(2):301–307

    Google Scholar 

  78. Wang W, Meng F, Liu P, Yang S, Wei D (2014) Construction of a promoter collection for genes co-expression in filamentous fungus Trichoderma reesei. J Ind Microbiol Biotechnol 41(11):1709–1718

    Article  CAS  PubMed  Google Scholar 

  79. Qin Y, Wei X, Song X, Qu Y (2008) Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol 135(2):190–195

    Article  CAS  PubMed  Google Scholar 

  80. Schulein M (1997) Enzymatic properties of cellulases from Humicola insolens. J Biotechnol 57(1-3):71–81

    Article  CAS  PubMed  Google Scholar 

  81. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16(9):839–842

    Article  PubMed  Google Scholar 

  82. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  83. Escalante R, Vicente JJ (2000) Dictyostelium discoideum: a model system for differentiation and patterning. Int J Dev Biol 44(8):819–835

    CAS  PubMed  Google Scholar 

  84. Stevense M, Chubb JR, Muramoto T (2011) Nuclear organization and transcriptional dynamics in Dictyostelium. Develop Growth Differ 53(4):576–586

    Article  CAS  Google Scholar 

  85. Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Madan Babu M, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435(7038):43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Urushihara H (2008) Developmental biology of the social amoeba: history, current knowledge and prospects. Develop Growth Differ 50(Suppl 1):S277–S281

    Article  Google Scholar 

  87. Gaudet P, Fey P, Chisholm R (2008) Dictyostelium discoideum: the Social Ameba. CSH Protoc 2008:pdb emo109

    Google Scholar 

  88. Devreotes PN, Zigmond SH (1988) Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu Rev Cell Biol 4:649–686

    Article  CAS  PubMed  Google Scholar 

  89. Jin T, Xu X, Fang J, Isik N, Yan J, Brzostowski JA, Hereld D (2009) How human leukocytes track down and destroy pathogens: lessons learned from the model organism Dictyostelium discoideum. Immunol Res 43(1-3):118–127

    Article  PubMed  Google Scholar 

  90. Arya R, Bhattacharya A, Saini KS (2008) Dictyostelium discoideum – a promising expression system for the production of eukaryotic proteins. FASEB J 22(12):4055–4066

    Article  CAS  PubMed  Google Scholar 

  91. Veltman DM, Akar G, Bosgraaf L, Van Haastert PJ (2009) A new set of small, extrachromosomal expression vectors for Dictyostelium discoideum. Plasmid 61(2):110–118

    Article  CAS  PubMed  Google Scholar 

  92. Williams KL, Emslie KR, Slade MB (1995) Recombinant glycoprotein production in the slime mould Dictyostelium discoideum. Curr Opin Biotechnol 6(5):538–542

    Article  CAS  PubMed  Google Scholar 

  93. Asgari S, Arun S, Slade MB, Marshall J, Williams KL, Wheldrake JF (2001) Expression of growth factors in Dictyostelium discoideum. J Mol Microbiol Biotechnol 3(3):491–497

    CAS  PubMed  Google Scholar 

  94. Voith G, Dingermann T (1995) Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum. Biotechnology (N Y) 13(11):1225–1229

    Article  CAS  Google Scholar 

  95. Nguyen HN, Yang JM, Afkari Y, Park BH, Sesaki H, Devreotes PN, Iijima M (2014) Engineering ePTEN, an enhanced PTEN with increased tumor suppressor activities. Proc Natl Acad Sci U S A 111(26):E2684–E2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vervoort EB, van Ravestein A, van Peij NN, Heikoop JC, van Haastert PJ, Verheijden GF, Linskens MH (2000) Optimizing heterologous expression in dictyostelium: importance of 5′ codon adaptation. Nucleic Acids Res 28(10):2069–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Behrmann E, Muller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S (2012) Structure of the rigor actin-tropomyosin-myosin complex. Cell 150(2):327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T, Sutoh K, Kurisu G (2012) The 2.8 A crystal structure of the dynein motor domain. Nature 484(7394):345–350

    Article  CAS  PubMed  Google Scholar 

  99. Basu S, Fey P, Pandit Y, Dodson R, Kibbe WA, Chisholm RL (2013) DictyBase 2013: integrating multiple Dictyostelid species. Nucleic Acids Res 41(Database issue):D676–D683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fey P, Dodson RJ, Basu S, Chisholm RL (2013) One stop shop for everything Dictyostelium: dictyBase and the Dicty Stock Center in 2012. Methods Mol Biol 983:59–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by Ministerio de Economía y Competitividad (ES) (grants PET2008_0101, BIO2009-11184, BFU2010-22260-C02-02 and CTQ2015-66206-C2-2-R to MCV) and the European Commission (Framework Programme 7) project ComplexINC No. 279039 to MCV.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teresa Suárez or M. Cristina Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gómez, S., López-Estepa, M., Fernández, F.J., Suárez, T., Vega, M.C. (2016). Alternative Eukaryotic Expression Systems for the Production of Proteins and Protein Complexes. In: Vega, M. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-319-27216-0_11

Download citation

Publish with us

Policies and ethics