Skip to main content

Heat Transport with Phonons and Electrons and Efficiency of Thermoelectric Generators

  • Chapter
  • First Online:
Mesoscopic Theories of Heat Transport in Nanosystems

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 6))

  • 814 Accesses

Abstract

Alternative power sources based on energy harvesting are promising candidates to substitute batteries due to their ability to extract power from the environment or secondary processes, as well as to attain fully autonomous systems without periodical human intervention. Thermoelectric energy harvesters have received special attention in recent years, due to the large amount of residual heat yielding from the current energy generation technology based on fossil fuels and from solar heating. Thermoelectric devices offer an attractive source of energy since they do not have moving parts, do not create pollution, do not make noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Refer to Eq. (6.31) in Sect. 6.1 for its explicit expression in the classical version in the case of a thermoelectric energy generator.

  2. 2.

    Along with previous observations in this case one also has β 2 = 1, and moreover γ = 0.

References

  1. Alvarez, F.X., Jou, D., Sellitto, A.: Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, 014317 (5 pp.) (2009)

    Google Scholar 

  2. Balkan, N.: Hot Electrons in Semiconductors - Physics and Devices. Oxford University Press, New York (1998)

    Google Scholar 

  3. Benedict, L.X., Louie, S.G., Cohen, M.L.: Heat capacity of carbon nanotubes. Solid State Commun. 100, 177–180 (1996)

    Article  Google Scholar 

  4. Benenti, G., Saito, K., Casati, G.: Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry. Phys. Rev. Lett. 106, 230602 (4 pp.) (2011)

    Google Scholar 

  5. Berciaud, S., Han, M.Y., Mak, K.F., Brus, L.E., Kim, P., Heinz, T.F.: Electron and optical phonon temperatures in electrically biased graphene. Phys. Rev. Lett. 104, 227401 (4 pp.) (2010)

    Google Scholar 

  6. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60, 197–216 (2007)

    Article  Google Scholar 

  7. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard-III, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    Article  Google Scholar 

  8. Bulusu, A., Walker, D.: Review of electronic transport models for thermoelectric materials. Superlattices Microstruct. 44, 1–36 (2008)

    Article  Google Scholar 

  9. Büttiker, M.: Capacitance, admittance, and rectification properties of small conductors. J. Phys. Condens. Matter 55, 9361–9378 (1993)

    Article  Google Scholar 

  10. Casimir, H.B.G.: On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945)

    Article  Google Scholar 

  11. Chen, G.: Nanoscale Energy Transport and Conversion - A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford (2005)

    Google Scholar 

  12. Christen, T., Büttiker, M.: Gauge-invariant nonlinear electric transport in mesoscopic conductors. Europhys. Lett. 35, 523–528 (1996)

    Article  Google Scholar 

  13. Cimmelli, V.A., Sellitto, A., Jou, D.: A nonlinear thermodynamic model for a breaking of the Onsager symmetry and efficiency of thermoelectric conversion in nanowires. Proc. R. Soc. A 470, 20140265 (14 pp.) (2014)

    Google Scholar 

  14. Cimmelli, V.A., Carlomagno, I., Sellitto, A.: Non-fourier heat transfer with phonons and electrons in a circular thin layer surrounding a hot nanodevice. Entropy 17, 5157–5170 (2015)

    Article  MathSciNet  Google Scholar 

  15. Coleman, B.D., Dill, E.H.: Thermodynamic restrictions on the constitutive equations of electromagnetic theory. Z. Angew. Math. Phys. 22, 691–702 (1971)

    Article  MATH  Google Scholar 

  16. Crommie, M.F., Zettl, A.: Thermal conductivity of single-crystal Bi-Sr-Ca-Cu-O. Phys. Rev. B 41, 10978–10982 (1990)

    Article  Google Scholar 

  17. de Groot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    Google Scholar 

  18. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.-P., Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)

    Article  Google Scholar 

  19. Dufty, J.W., Rubí, J.M.: Generalized Onsager symmetry. Phys. Rev. A 36, 222–225 (1987)

    Article  MathSciNet  Google Scholar 

  20. Gilbert, G.T.: Positive definite matrices and Sylvester’s criterion. Am. Math. Mon. 08, 44–46 (1991)

    Article  MATH  Google Scholar 

  21. Goodson, K.E., Flik, M.I.: Electron and phonon thermal conduction in epitaxial high-T c superconducting films. J. Heat Transf. Trans. ASME 115, 17–25 (1993)

    Article  Google Scholar 

  22. Gouin, H., Ruggeri, T.: Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids. Phys. Rev. E 78, 016303 (7 pp.) (2008)

    Google Scholar 

  23. Gyarmati, I.: Nonequilibrium Thermodynamics. Springer, Berlin (1970)

    Google Scholar 

  24. Harman, T.C., Walsh, M.P., La Forge, B.E., Turner, G.W.: Nanostructured thermoelectric materials. J. Electron. Mater. 34, L19–L22 (2005)

    Article  Google Scholar 

  25. Hicks, L.D., Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)

    Article  Google Scholar 

  26. Hicks, L.D., Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993)

    Article  Google Scholar 

  27. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)

    Article  Google Scholar 

  28. Hopkins, P.E., Norris, P.M., Phinney, L.M., Policastro, S.A., Kelly, R.G.: Thermal conductivity in nanoporous gold films during electron-phonon nonequilibrium. J. Nanomater. 2008, 418050 (7 pp.) (2008)

    Google Scholar 

  29. Humphrey, T.E., Linke, H.: Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (4 pp.) (2005)

    Google Scholar 

  30. Humphrey, T.E., Newbury, R., Taylor, R.P., Linke, H.: Reversible quantum Brownian heat engines for electrons. Phys. Rev. Lett. 89, 116801 (4 pp.) (2002)

    Google Scholar 

  31. Iwanaga, S., Toberer, E.S., La Londe, A., Snyder, G.J.: A high temperature apparatus for measurement of the Seebeck coefficient. Rev. Sci. Instrum. 82, 063905 (2011)

    Article  Google Scholar 

  32. Jeffrey Snyder, G., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  Google Scholar 

  33. Joshi, G., et al.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670–4674 (2008)

    Article  Google Scholar 

  34. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th revised edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  35. Jou, D., Cimmelli, V.A., Sellitto, A.: Nonlocal heat transport with phonons and electrons: application to metallic nanowires. Int. J. Heat Mass Transf. 55, 2338–2344 (2012)

    Article  MATH  Google Scholar 

  36. Jou, D., Sellitto, A., Cimmelli, V.A.: Multi-temperature mixture of phonons and electrons and nonlocal thermoelectric transport in thin layers. Int. J. Heat Mass Transf. 71, 459–468 (2014)

    Article  Google Scholar 

  37. Koechlin, F., Bonin, B.: Parametrisation of the Niobium thermal conductivity in the superconducting state. In: Bonin, B. (ed.) Proceedings of the 1995 Workshop on RF Superconductivity, Gif-sur-Yvette, France, pp. 665–669. Gordon and Breach, New York (1996)

    Google Scholar 

  38. Kuznetsov, V.L.: Functionally graded materials for thermoelectric applications. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano – Sec. 38. CRC Press, Boca Raton (2005)

    Google Scholar 

  39. Kuznetsov, V.L., Kuznetsova, L.A., Kaliazin, A.E., Rowe, D.M.: High performance functionally graded and segmented Bi 2 Te 3-based materials for thermoelectric power generation. J. Mater. Sci. 37, 2893–2897 (2002)

    Article  Google Scholar 

  40. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  41. Lin, Z., Zhigilei, L.V., Celli, V.: Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (17 pp.) (2008)

    Google Scholar 

  42. Müller, E., Drašar, Č., Schilz, J., Kaysser, W.A.: Functionally graded materials for sensor and energy applications. Mater. Sci. Eng. A362, 17–39 (2003)

    Article  Google Scholar 

  43. Nakamura, D., Murata, M., Yamamoto, H., Hasegawa, Y., Komine, T.: Thermoelectric properties for single crystal bismuth nanowires using a mean free path limitation model. J. Appl. Phys. 110, 053702 (6 pp.) (2011)

    Google Scholar 

  44. Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  MATH  Google Scholar 

  45. Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)

    Article  MATH  Google Scholar 

  46. Pokharela, M., Zhaoa, H., Lukasa, K., Rena, Z., Opeila, C., Mihaila, B.: Phonon drag effect in nanocomposite FeSb2. MRS Commun. 3, 31–36 (2013)

    Article  Google Scholar 

  47. Qui, B., Sun, L., Ruan, X.: Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: a molecular dynamics study. Phys. Rev. B 83, 035312 (7 pp.) (2011)

    Google Scholar 

  48. Rogolino, P., Sellitto, A., Cimmelli, V.A.: Influence of the electron and phonon temperature and of the electric-charge density on the optimal efficiency of thermoelectric nanowires. Mech. Res. Commun. 68, 77–82 (2015)

    Article  Google Scholar 

  49. Ruggeri, T.: Multi-temperature mixture of fluids. Theor. Appl. Mech. 36, 207–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ruggeri, T., Lou, J.: Heat conduction in multi-temperature mixtures of fluids: the role of the average temperature. Phys. Lett. A 373, 3052–3055 (2009)

    Article  MATH  Google Scholar 

  51. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  52. Sánchez, D., Büttiker, M.: Magnetic-field asymmetry of nonlinear mesoscopic transport. Phys. Rev. Lett. 93, 106802 (4 pp.) (2004)

    Google Scholar 

  53. Sánchez, D., López, R.: Scattering theory of nonlinear thermoelectric transport. Phys. Rev. Lett. 110, 026804 (5 pp.) (2013)

    Google Scholar 

  54. Satterthwaite, C.B., Ure, R.W.J.: Electrical and thermal properties of Bi2Te3. Phys. Rev. 108, 1164–1170 (1957)

    Article  Google Scholar 

  55. Schreier, M., Kamra, A., Weiler, M., Xiao, J., Bauer, G.E.W., Gross, R., Goennenwein, S.T.B.: Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures. Phys. Rev. B 88, 094410 (2013)

    Article  Google Scholar 

  56. Sellitto, A.: Crossed nonlocal effects and breakdown of the Onsager symmetry relation in a thermodynamic description of thermoelectricity. Phys. D 243, 53–61 (2014)

    MathSciNet  Google Scholar 

  57. Sellitto, A.: Frequency dependent figure-of-merit in cylindrical thermoelectric nanodevices. Phys. B 456, 57–65 (2015)

    Article  Google Scholar 

  58. Sellitto, A., Cimmelli, V.A., Jou, D.: Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires. Int. J. Heat Mass Transf. 57, 109–116 (2013)

    Article  Google Scholar 

  59. Sellitto, A., Cimmelli, V.A., Jou, D.: Influence of electron and phonon temperature on the efficiency of thermoelectric conversion. Int. J. Heat Mass Transf. 80, 344–352 (2015)

    Article  Google Scholar 

  60. Spivak, B., Zyuzin, A.: Signature of the electron-electron interaction in the magnetic-field dependence of nonlinear I-V characteristics in mesoscopic systems. Phys. Rev. Lett. 93, 226801 (3 pp.) (2004)

    Google Scholar 

  61. Stojanovic, N., Maithripala, D.H.S., Berg, J.M., Holtz, M.: Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law. Phys. Rev. B 82, 075418 (9 pp.) (2010)

    Google Scholar 

  62. Straube, H., Wagner, J.-M., Breitenstein, O.: Measurement of the Peltier coefficient of semiconductors by lock-in thermography. Appl. Phys. Lett. 95, 052107 (3 pp.) (2009)

    Google Scholar 

  63. Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behaviour, 2nd edn. Wiley, Chichester (2014)

    Google Scholar 

  64. Volz, S. (ed.): Thermal Nanosystems and Nanomaterials. Topics in Applied Physics. Springer, Berlin (2010)

    Google Scholar 

  65. Wang, X., Wang, Z. (eds.): Nanoscale Thermoelectrics. Springer, Berlin (2014)

    Google Scholar 

  66. Zemanski, M.W., Dittman, R.H.: Heat and Thermodynamics, 7th revised edn. MacGraw-Hill, New York (1997)

    Google Scholar 

  67. Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw-Hill, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sellitto, A., Cimmelli, V.A., Jou, D. (2016). Heat Transport with Phonons and Electrons and Efficiency of Thermoelectric Generators. In: Mesoscopic Theories of Heat Transport in Nanosystems. SEMA SIMAI Springer Series, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27206-1_6

Download citation

Publish with us

Policies and ethics