Skip to main content

Nonequilibrium Thermodynamics and Heat Transport at Nanoscale

  • Chapter
  • First Online:
  • 857 Accesses

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 6))

Abstract

Current frontiers in nanotechnology and materials science [3–5, 9, 10, 12–15, 22, 23, 91] require generalized transport equations beyond the local-equilibrium theory [58, 64, 71, 96]. In particular, heat-transport equations for miniaturized systems whose size is comparable to (or smaller than) the mean-free path of the heat carriers nowadays have become an important topic in science and technology [30– 32, 39, 92]. Analogously, the behavior of systems submitted to high-frequency perturbations which are comparable to the reciprocal of internal relaxation times is studied to optimize the operation of high-frequency devices [55–57, 59, 61, 75, 79]. Equations for heat, mass, charge, and momentum transport have been actively explored in several situations: in miniaturized electronic devices, in nanotubes and nanowires, in theoretical models of energy transport in one-dimensional chains, in rarefied gases, etc. [58, 64]. As a consequence, new thermodynamic formalisms are necessary in this endeavor because thementioned situations clearly exceed the limits of validity of the classical local-equilibrium thermodynamics. This constitutes a formidable challenge for nonequilibrium thermodynamics to better understand its basic concepts, its limits of application, and its frontiers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transports: from diffusive to ballistic regime. Appl. Phys. Lett. 90, 083109 (3 pp.) (2007)

    Google Scholar 

  2. Alvarez, F.X., Jou, D.: Size and frequency dependence of effective thermal conductivity in nanosystems. J. Appl. Phys. 103, 094321 (8 pp.) (2008)

    Google Scholar 

  3. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  Google Scholar 

  4. Balandin, A., Wang, K.L.: Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544–1549 (1998)

    Article  Google Scholar 

  5. Balandin, A.A., Ghosh, S., Baoand, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.-N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  6. Banach, Z., Larecki, W.: Nine-moment phonon hydrodynamics based on the modified Grad-type approach: formulation. J. Phys. A: Math. Gen. 37, 9805–9829 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Banach, Z., Larecki, W.: Nine-moment phonon hydrodynamics based on the maximum-entropy closure: one-dimensional flow. J. Phys. A: Math. Gen. 38, 8781–8802 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Banach, Z., Larecki, W.: Chapman-Enskog method for a phonon gas with finite heat flux. J. Phys. A: Math. Gen. 41, 375502 (18 pp.) (2008)

    Google Scholar 

  9. Benedetto, G., Boarino, L., Spagnolo, R.: Evaluation of thermal conductivity of porous silicon layers by a photoacoustic method. Appl. Phys. A: Mater. Sci. Process. 64, 155–159 (1997)

    Article  Google Scholar 

  10. Benedict, L.X., Louie, S.G., Cohen, M.L.: Heat capacity of carbon nanotubes. Solid State Commun. 100, 177–180 (1996)

    Article  Google Scholar 

  11. Boltzmann, L.: Leçons sur la Théorie des Gaz. Gauthier-Villars, Paris (1902)

    Google Scholar 

  12. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard-III, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    Article  Google Scholar 

  13. Cahill, D.C., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)

    Article  Google Scholar 

  14. Cahill, D.G., et al.: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (45 pp.) (2014)

    Google Scholar 

  15. Canham, L.T.: Silicon quantum wire fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  Google Scholar 

  16. Cao, B.-Y., Guo, Z.-Y.: Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (6 pp.) (2007)

    Google Scholar 

  17. Casas-Vázquez, J., Jou, D.: Temperature in nonequilibrium states: a review of open problems and current proposals. Rep. Prog. Phys. 66, 1937–2023 (2003)

    Article  Google Scholar 

  18. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  19. Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C. R. Acad. Sc. 247, 431–433 (1958)

    MathSciNet  Google Scholar 

  20. Chen, G.: Ballistic-diffusion equations for transient heat conduction from nano to macroscales. J. Heat Transf. - T. ASME 124, 320–328 (2001)

    Article  Google Scholar 

  21. Chen, G.: Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001)

    Article  Google Scholar 

  22. Chen, G.: Nanoscale Energy Transport and Conversion - A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford (2005)

    Google Scholar 

  23. Chung, J.D.,, Kaviany, M.: Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon. Int. J. Heat Mass Transf. 43, 521–538 (2000)

    Article  MATH  Google Scholar 

  24. Cimmelli, V.A.: Mesoscopic approach to inviscid gas dynamics with thermal lag. Ann. Phys. (Berlin) 525, 921–933 (2013)

    Google Scholar 

  25. Cimmelli, V.A., Frischmuth, K.: Determination of material functions through second sound measurements in a hyperbolic heat conduction theory. Math. Comput. Model. 24, 19–28 (1996)

    Article  MATH  Google Scholar 

  26. Cimmelli, V.A., Frischmuth, K.: Nonlinear effects in thermal wave propagation near zero absolute temperature. Physica B 355, 147–157 (2005)

    Article  Google Scholar 

  27. Cimmelli, V.A., Frischmuth, K.: Gradient generalization to the extended thermodynamic approach and diffusive-hyperbolic heat conduction. Physica B 400, 257–265 (2007)

    Article  Google Scholar 

  28. Cimmelli, V.A., Kosiński, W.: Non-equilibrium semi-empirical temperature in materials with thermal relaxation. Arch. Mech. 47, 753–767 (1991)

    MATH  Google Scholar 

  29. Cimmelli, V.A., Ván, P.: The effects of nonlocality on the evolution of higher order fluxes in nonequilibrium thermodynamics. J. Math. Phys. 46, 112901 (15 pp.) (2005)

    Google Scholar 

  30. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlocal effects and second sound in a nonequilibrium steady state. Phys. Rev. B 79, 014303 (13 pp.) (2009)

    Google Scholar 

  31. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys. Rev. B 81, 054301 (9 pp.) (2010)

    Google Scholar 

  32. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys. Rev. B 82, 184302 (9 pp.) (2010)

    Google Scholar 

  33. Cimmelli, V.A., Jou, D., Ruggeri, T., Ván, P.: Entropy principle and recent results in non-equilibrium theories. Entropy 16, 1756–1807 (2014)

    Article  MathSciNet  Google Scholar 

  34. Coleman, B.D., Mizel, V.J.: On the general theory of fading memory. Arch. Ration. Mech. Anal. 29, 18–31 (1968)

    MathSciNet  MATH  Google Scholar 

  35. Criado-Sancho, J.M., Jou, D., Casas-Vázquez, J.: Nonequilibrium kinetic temperatures in flowing gases. Phys. Lett. A 350, 339–341 (2006)

    Article  Google Scholar 

  36. de Groot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. North-Holland Publishing Company, Amsterdam (1962)

    Google Scholar 

  37. Dedeurwaerdere, T., Casas-Vázquez, J., Jou, D., Lebon, G.: Foundations and applications of a mesoscopic thermodynamic theory of fast phenomena. Phys. Rev. E 53, 498–506 (1996)

    Article  Google Scholar 

  38. Demirel, Y., Sandler, I.: Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport. Int. J. Heat Mass Transf. 44, 2439–2451 (2001)

    Article  MATH  Google Scholar 

  39. Dong, Y.: Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems. Springer, Berlin/Heidelberg/New York (2016)

    Book  Google Scholar 

  40. Dong, Y., Cao, B.-Y., Guo, Z.-Y.: Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (6 pp.) (2011)

    Google Scholar 

  41. Dong, Y., Cao, B.-Y., Guo, Z.-Y.: General expression for entropy production in transport processes based on the thermomass model. Phys. Rev. E 85, 061107 (8 pp.) (2012)

    Google Scholar 

  42. Dong, Y., Cao, B.-Y., Guo, Z.-Y.: Temperature in nonequilibrium states and non-Fourier heat conduction. Phys. Rev. E 87, 032150 (8 pp.) (2013)

    Google Scholar 

  43. Dreyer, W., Struchtrup, H.: Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993)

    Article  MathSciNet  Google Scholar 

  44. Ferrer, M., Jou, D.: Higher-order fluxes and the speed of thermal waves. Int. J. Heat Mass Transf. 34, 3055–3060 (1991)

    Article  Google Scholar 

  45. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  46. Grmela, M., Lebon, G., Dauby, P.C., Bousmina, M.: Ballistic-diffusive heat conduction at nanoscale: GENERIC approach. Phys. Lett. A 339, 237–245 (2005)

    Article  MATH  Google Scholar 

  47. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)

    Article  Google Scholar 

  48. Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)

    Article  Google Scholar 

  49. Gyarmati, I.: On the wave approach of thermodynamics and some problems of non-linear theories. J. Non-Equilib. Thermodyn. 2, 236–260 (1977)

    Article  Google Scholar 

  50. Győry, E., Márkus, F.: Size dependent thermal conductivity in nano-systems. Thin Solid Films 565, 89–93 (2014)

    Article  Google Scholar 

  51. Jackson, H.E., Walker, C.T.: Thermal conductivity, second sound, and phonon-phonon interactions in NaF. Phys. Rev. Lett. 3, 1428–1439 (1971)

    Google Scholar 

  52. Jou, D., Criado-Sancho, M.: Thermodynamic stability and temperature overshooting in dual-phase-lag heat transfer. Phys. Lett. A 48, 172–178 (1998)

    Article  Google Scholar 

  53. Jou, D., Restuccia, L.: Mesoscopic transport equations and contemporary thermodynamics: an introduction. Contemp. Phys. 52, 465–474 (2011)

    Article  Google Scholar 

  54. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended irreversible thermodynamics revisited (1988–1998). Rep. Prog. Phys. 62, 1035–1142 (1999)

    Article  Google Scholar 

  55. Jou, D., Casas-Vázquez, J., Lebon, G., Grmela, M.: A phenomenological scaling approach for heat transport in nano-systems. Appl. Math. Lett. 18, 963–967 (2005)

    Article  MATH  Google Scholar 

  56. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended irreversible thermodynamics of heat transport. A brief introduction. Proc. Est. Acad. Sci. 57, 118–126 (2008)

    Article  MATH  Google Scholar 

  57. Jou, D., Cimmelli, V.A., Sellitto, A.: Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers. Phys. Lett. A 373, 4386–4392 (2009)

    Article  MATH  Google Scholar 

  58. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th revised edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  59. Jou, D., Criado-Sancho, M., Casas-Vázquez, J.: Heat fluctuations and phonon hydrodynamics in nanowires. J. Appl. Phys. 107, 084302 (4 pp.) (2010)

    Google Scholar 

  60. Jou, D., Cimmelli, V.A., Sellitto, A.: Dynamical temperature and renormalized flux variable in extended thermodynamics of rigid heat conductors. J. Non-Equilib. Thermodyn. 36, 373–392 (2011)

    Article  MATH  Google Scholar 

  61. Jou, D., Sellitto, A., Alvarez, F.X.: Heat waves and phonon-wall collisions in nanowires. Proc. R. Soc. A 467, 2520–2533 (2011)

    Article  MathSciNet  Google Scholar 

  62. Kovács, R., Ván, P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)

    Article  Google Scholar 

  63. Lebon, G., Ruggieri, M., Valenti, A.: Extended thermodynamics revisited: Renormalized flux variables and second sound in rigid solids. J. Phys.: Condens. Matter 20, 025223 (11 pp.) (2008)

    Google Scholar 

  64. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  65. Lebon, G., Machrafi, H., Grmela, M., Dubois, C.: An extended thermodynamic model of transient heat conduction at sub-continuum scales. Proc. R. Soc. A 467, 3241–3256 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Lee, S., Broido, D., Esfarjani, K., Chen, G.: Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (9 pp.) (2015)

    Google Scholar 

  67. Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  68. Luzzi, R., Vasconcellos, A.R., Casas-Vázquez, J., Jou, D.: Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics. Physica A 234, 699–714 (1997)

    Article  Google Scholar 

  69. Machrafi, H., Lebon, G.: Size and porosity effects on thermal conductivity of nanoporous material with an extension to nanoporous particles embedded in ahost matrix. Phys. Lett. A 379, 968–973 (2015)

    Article  Google Scholar 

  70. Márkus, F., Gambár, K.: Heat propagation dynamics in thin silicon layers. Int. J. Heat Mass Transf. 56, 495–500 (2013)

    Article  Google Scholar 

  71. Minnich, A.J.: Advances in the measurement and computation of thermal phonon transport properties. J. Phys.: Condens. Matter 27, 053202 (21 pp.) (2015)

    Google Scholar 

  72. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  73. Narayanamurti, V., Dynes, R.D.: Observation of second sound in bismuth. Phys. Rev. Lett. 28, 1461–1465 (1972)

    Article  Google Scholar 

  74. Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, New York (2005)

    Book  Google Scholar 

  75. Pattamatta, A., Madnia, C.K.: Modeling heat transfer in Bi2Te3-Sb2Te3 nanostructures. Int. J. Heat Mass Transf. 52, 860–869 (2009)

    Article  MATH  Google Scholar 

  76. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer International Publishing, Switzerland (2015)

    Book  MATH  Google Scholar 

  77. Sellitto, A., Cimmelli, V.A.: A continuum approach to thermomass theory. J. Heat Transf. - T. ASME 134, 112402 (6 pp.) (2012)

    Google Scholar 

  78. Sellitto, A., Cimmelli, V.A.: Flux limiters in radial heat transport in silicon nanolayers. J. Heat Transf. - T. ASME 136, 071301 (6 pp.) (2014)

    Google Scholar 

  79. Sellitto, A., Alvarez, F.X., Jou, D.: Phonon-wall interactions and frequency-dependent thermal conductivity in nanowires. J. Appl. Phys. 109, 064317 (8 pp.) (2011)

    Google Scholar 

  80. Serdyukov, S.I.: A new version of extended irreversible thermodynamics and dual-phase-lag model in heat transfer. Phys. Lett. A 281, 16–20 (2001)

    Article  MATH  Google Scholar 

  81. Serdyukov, S.I.: Higher order heat and mass transfer equations and their justification in extended irreversible thermodynamics. Theor. Found. Chem. Eng. 47, 89–103 (2013)

    Article  Google Scholar 

  82. Serdyukov, S.I., Voskresenskii, N.M., Bel’nov, V.K., Karpov, I.I.: Extended irreversible thermodynamics and generalization of the dual-phase-lag model in heat transfer. J. Non-Equilib. Thermodyn. 28, 207–219 (2003)

    Article  Google Scholar 

  83. Sieniutycz, S.: Conservation Laws in Variational Thermo-Hydrodynamics. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  84. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  85. Straughan, B.: Heat Waves. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  86. Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory - Interaction of Mechanics and Mathematics. Springer, New York (2005)

    MATH  Google Scholar 

  87. Tzou, D.Y.: Nonlocal behavior in phonon transport. Int. J. Heat Mass Transf. 54, 475–481 (2011)

    Article  MATH  Google Scholar 

  88. Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behaviour, 2nd edn. Wiley, Chichester (2014)

    Google Scholar 

  89. Tzou, D.Y., Guo, Z.-Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sci. 49, 1133–1137 (2010)

    Article  Google Scholar 

  90. Vasconcellos, A.R., Luzzi, R., Jou, D., Casas-Vázquez, J.: Thermal waves in an extended hydrodynamic approach. Physica A 212, 369–381 (1994)

    Article  Google Scholar 

  91. Vázquez, F., del Río, J.A.: Thermodynamic characterization of the diffusive transport to wave propagation transition in heat conducting thin films. J. Appl. Phys. 112, 123707 (8 pp.) (2012)

    Google Scholar 

  92. Vázquez, F., Márkus, F., Gambár, K.: Quantized heat transport in small systems: A phenomenological approach. Phys. Rev. E 79, 031113 (7 pp.) (2009)

    Google Scholar 

  93. Verhás, J.: On the entropy current. J. Non-Equilib. Thermodyn. 8, 201–206 (1983)

    Article  Google Scholar 

  94. Vernotte, P.: Les paradoxes de la théorie continue de l’équation de la chaleur. C. R. Acad. Sc. 246, 3154–3155 (1958)

    MathSciNet  Google Scholar 

  95. Xu, M.T., Wang, L.Q.: Dual-phase lagging heat conduction based on Boltzmann transport equation. Int. J. Heat Mass Transf. 48, 5616–5624 (2005)

    Article  MATH  Google Scholar 

  96. Yang, N., Xu, X., Zhang, G., Li, B.: Thermal transport in nanostructures. AIP Adv. 2, 041410 (24 pp.) (2012)

    Google Scholar 

  97. Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw-Hill, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sellitto, A., Cimmelli, V.A., Jou, D. (2016). Nonequilibrium Thermodynamics and Heat Transport at Nanoscale. In: Mesoscopic Theories of Heat Transport in Nanosystems. SEMA SIMAI Springer Series, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27206-1_1

Download citation

Publish with us

Policies and ethics