Skip to main content

Results and Discussion

  • Chapter
  • First Online:
A First Example of a Lyotropic Smectic C* Analog Phase

Part of the book series: Springer Theses ((Springer Theses))

  • 372 Accesses

Abstract

The experimental results of the present thesis will be presented and discussed in the following chapter. The main focus will be upon the detection and characterization of the novel lyotropic SmC* analog phase, even though a variety of other phases occurs in the investigated solvent/surfactant mixtures. Furthermore, the obtained results will be discussed in detail in the course of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In order to facilitate the readability of this thesis, the lyotropic analog of the chiral SmC* phase will be abbreviated with the term ‘lyo-SmC* phase’ in the following if expedient.

  2. 2.

    The International Union of Pure and Applied Chemistry (IUPAC) recommended in 2001 [10], that every liquid crystalline phase composed of chiral molecules should be denoted with a superscript asterisk. However, this is not customary in lyotropic liquid crystal nomenclature, except for the chiral nematic phase (N*). Thus, for all other conventional lyotropic liquid crystalline phases the asterisk will be omitted. Whenever the chirality of the molecules seems to be especially important, the according phase will be denoted as ‘chiral’.

  3. 3.

    Due to the rhombic shape of the unit cell, it should also be possible to index the scattering pattern of the Col2 phase on the basis of the plane crystallographic group cm. However, as the group cm possess mirror planes this would not be conform to the chirality of the molecules.

  4. 4.

    The measurements in Fig. 5.25 were partially performed by Marc Harjung and Friederike Knecht within the scope of a supervised research project.

  5. 5.

    Derived from molecular modeling with the software Chem3D Pro 13.0 by CambridgeSoft on the AM1 level.

  6. 6.

    The measurements in Fig. 5.28 were partially performed by Friederike Knecht within the scope of a supervised research project.

  7. 7.

    The depicted sketch corresponds to a sample of C5O with 20 wt% of formamide in scale and concentration, if the number of surfactant molecules is doubled. Half of the surfactant molecules were omitted for sake of clarity.

References

  1. N. Pietschmann, A. Lunow, G. Brezesinski, C. Tschierske, F. Kuschel, H. Zaschke, Colloid Polym. Sci. 269, 636–639 (1991)

    Article  CAS  Google Scholar 

  2. L. Li, C.D. Jones, J. Magolana, R.P. Lemieux, J. Mater. Chem. 17, 2313–2318 (2007)

    Article  CAS  Google Scholar 

  3. J.C. Roberts, N. Kapernaum, F. Giesselmann, R.P. Lemieux, J. Am. Chem. Soc. 130, 13842–13843 (2008)

    Article  CAS  Google Scholar 

  4. C. Tschierske, A. Lunow, D. Joachimi, F. Hentrich, D. Gridziunaite, H. Zaschke, A. Mädicke, G. Brezesinski, F. Kuschel, Liq. Cryst. 9, 821–829 (1991)

    Google Scholar 

  5. M. Kçlbel, T. Beyersdorff, C. Tschierske, S. Diele, J. Kain, Chem. Eur. J. 12, 3821–3837 (2006)

    Article  Google Scholar 

  6. J.R. Bruckner, Struktur und Chiralitätseffekte in lyotrop-flüssigkristallinen Phasen eines chiralen 1,2-Diols. Diploma thesis, University of Stuttgart, 2010

    Google Scholar 

  7. J.R. Bruckner, D. Krueerke, J.H. Porada, S. Jagiella, D. Blunk, F. Giesselmann, J. Mater. Chem. 22, 18198–18203 (2012)

    Article  CAS  Google Scholar 

  8. M.A. Schafheutle, H. Finkelmann, Liq. Cryst. 3(10), 1369–1386 (1988)

    Article  CAS  Google Scholar 

  9. S. Ujiie, Y. Yano, Chem. Commun. 79–80 (2000)

    Google Scholar 

  10. M. Barón et al., Pure Appl. Chem. 73(5), 845–895 (2001)

    Google Scholar 

  11. B. Neumann, C. Sauer, S. Diele, C. Tschierske, J. Mater. Chem. 6(7), 1087–1098 (1996)

    Article  CAS  Google Scholar 

  12. N. Lindner, M. Kölbel, C. Sauer, S. Diele, J. Jokiranta, C. Tschierske, J. Phys. Chem. B 102, 5261–5273 (1998)

    Article  CAS  Google Scholar 

  13. A. Lattes, E. Perez, I. Rico-Lattes, C. R. Chimie 12, 45–53 (2009)

    Article  CAS  Google Scholar 

  14. Sigma-Aldrich, Material Safety Data Sheet, www.sigmaaldrich.com (2014)

  15. W.M. Haynes, T.J. Bruno, D.R. Lide, CRC Handbook of Chemistry and Physics, 95th edn. Internet Version 2015 (CRC Press, Taylor and Francis Group, 2014)

    Google Scholar 

  16. Merck Millipore, Material Safety Data Sheet, www.merckmillipore.com (2014)

  17. J.R. Bruckner, F. Knecht, F. Giesselmann, Origin of the director tilt in the lyotropic smectic C* analog phase: hydration interactions and solvent variations. ChemPhysChem, doi:10.1002/cphc.201500673

    Google Scholar 

  18. K. Dimroth, C. Reichardt, T. Siepmann, F. Bohlmann, Liebigs Ann. Chem. 661, 1–37 (1963)

    Article  CAS  Google Scholar 

  19. G.W. Gray, J.W.G. Goodby, Smectic Liquid Crystals—Textures and Structures (Leonard Hill, Glasgow and London, 1984)

    Google Scholar 

  20. J.R. Bruckner, J.H. Porada, C.F. Dietrich, I. Dierking, F. Giesselmann, Angew. Chem. Int. Ed. 52, 8934–8937 (2013)

    Article  CAS  Google Scholar 

  21. N.A. Clark, T.P. Rieker, J.E. MacLennan, Ferroelectrics 85(1), 79–97 (1988)

    Article  Google Scholar 

  22. C. Giacovazzo, H.L Monaco, G. Artioli, D. Viterbo, M. Milanesio, G. Ferraris, G. Gilli, P. Gilli, G. Zanotti, M. Catti, in Fundamentals of Crystallography, 3rd ed. by C. Giacovazzo (Oxford University Press, New York, 2011)

    Google Scholar 

  23. R.D. Kamien, T.C. Lubensky, J. Phys. II 7, 157–163 (1997)

    Google Scholar 

  24. J.W. Goodby, M.A. Waugh, S.M. Stein, E. Chin, R. Pindak, J.S. Patel, J. Am. Chem. Soc. 111, 8119–8125 (1989)

    Article  CAS  Google Scholar 

  25. J.W. Goodby, M.A. Waugh, S.M. Stein, E. Chin, R. Pindak, J.S. Patel, Nature 337, 449–452 (1989)

    Article  CAS  Google Scholar 

  26. S.R. Renn, T.C. Lubensky, Phys. Rev. A 38(4), 2132–2147 (1988)

    Article  Google Scholar 

  27. I. Dierking, Liq. Cryst. 26(1), 83–95 (2010)

    Article  Google Scholar 

  28. E. Fontes, P.A. Heiney, J.L. Haseltine, A.B. Smith, J. Phys. 47, 1533–1539 (1986)

    Article  CAS  Google Scholar 

  29. D. Nonnenmacher, Struktur-Eigenschaftsbeziehungen in smektischen Flüssigkristallen vom de Vries-Typ. Doctoral thesis, University of Stuttgart, 2014

    Google Scholar 

  30. P. Martinot-Lagarde, J. Phys. Colloques 37, C3-129–C3-132 (1976)

    Google Scholar 

  31. K. Kondo, H. Takezoe, A. Fukuda, E. Kuze, Jpn. J. Appl. Phys. 21(2), 224–229 (1982)

    Article  CAS  Google Scholar 

  32. M. Krueger, F. Giesselmann, J. Appl. Phys. 101, 094012-1–094012-8 (2007)

    Article  Google Scholar 

  33. W. Kuczyński, Phys. Rev. E 81, 021708–1–021708-6 (2010)

    Google Scholar 

  34. F. Fried, J.M. Gill, P. Sixou, Mol. Cryst. Liq. Cryst. 98, 209–221 (1983)

    Article  CAS  Google Scholar 

  35. B.R. Harkness, D.G. Gray, Macromolecules 23(5), 1452–1457 (1990)

    Article  CAS  Google Scholar 

  36. J. Partyka, K. Hiltrop, Liq. Cryst. 20(5), 611–618 (1996)

    Article  CAS  Google Scholar 

  37. H. Stegemeyer, H.-J. Kersting, W. Kuczynski, Ber. Bunsenges. Phys. Chem. 91, 3–7 (1987)

    Article  Google Scholar 

  38. H.-R. Dübal, C. Escher, D. Ohlendorf, Ferroelectrics 84, 143–165 (1988)

    Article  Google Scholar 

  39. S.-Y.T. Tzeng, C.-N. Chen, Y. Tzeng, Liq. Cryst. 37(9), 1221–1224 (2010)

    Article  CAS  Google Scholar 

  40. G. Maxein, S. Mayer, R. Zentel, Macromolecules 32, 5747–5754 (1999)

    Article  CAS  Google Scholar 

  41. Q. Liu, T. Asavei, T. Lee, H. Rubinsztein-Dunlop, S. He, I.I. Smalyukh, Opt. Express 19(25), 24143–25135 (2001)

    Google Scholar 

  42. Y. Kimura, D. Mizuno, Mol. Cryst. Liq. Cryst. 478, 759–769 (2007)

    Article  CAS  Google Scholar 

  43. N. Yamamoto, M. Ichikawa, Y. Kimura, Phys. Rev. E 82, 021506-1–021506-8 (2010)

    Article  Google Scholar 

  44. E. Kálmán, I. Serke, G. Pálinkás, M.D. Zeidler, F.J. Wiesmann, H. Bertagnolli, P. Chieux, Z. Naturforsch. 38a, 231–236 (1983)

    Google Scholar 

  45. I. Bakó, T. Megyes, S. Bálint, V. Chihaia, M.-C. Bellissent-Funel, H. Krienke, A. Kopf, S.-H. Suh, J. Chem. Phys. 132, 014506-1–014506-7 (2010)

    Article  Google Scholar 

  46. S. Suhai, J. Chem. Phys. 103(16), 7030–7039 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Ricarda Bruckner .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bruckner, J.R. (2016). Results and Discussion. In: A First Example of a Lyotropic Smectic C* Analog Phase. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-27203-0_5

Download citation

Publish with us

Policies and ethics