Thin-Film Transistors

  • Ana Paula Pinto Correia
  • Pedro Miguel Cândido Barquinha
  • João Carlos da Palma Goes
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


Thin-film transistors (TFTs) are key elements for thin film electronics, being their most significant application the pixel switching elements on flat panel displays (FPDs). Semiconductor materials enabling faster TFTs, such as lowtemperature polycrystalline silicon (LTPS) or transparent semiconducting oxides (TSOs), hold the promise of expanding TFT application to gate and data drivers or even full systems-on-panel, for increased reliability and lower production costs.

This chapter is an introductory background and a concise historical perspective related to TFTs. Additionally, taking into account that the devices explored in this work use an oxide semiconductor (indium-gallium-zinc oxide, IGZO) and an high- › dielectric (based on Ta2O5 and SiO2), a brief overview and historical context regarding TSOs and high-› dielectrics is also provided.


Complementary Metal Oxide Semiconductor Metal Insulator Semiconductor Active Matrix Liquid Crystal Display Oxide TFTs Saturation Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.C. Tickle, Thin-Film Transistors: A New Approach to Microelectronics (Wiley, New York, 1969)Google Scholar
  2. 2.
    J.-H. Lee, S.-T. Wu, D.N. Liu, Introduction To Flat Panel Displays (Wiley, West Sussex, 2008), p. 280Google Scholar
  3. 3.
    R.L. Hoffman, B.J. Norris, J.F. Wager, ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82(5), 733 (2003)Google Scholar
  4. 4.
    P. Barquinha, Transparent oxide thin-film transistors: production, characterization and integration. Ph.D thesis, 2010Google Scholar
  5. 5.
    A. Facchetti, T.J. Marks (eds.), Transparent Electronics (Wiley, Chichester, 2010)Google Scholar
  6. 6.
    M. Grundmann, H. Frenzel, A. Lajn, M. Lorenz, F. Schein, H. von Wenckstern, Transparent semiconducting oxides: materials and devices. Phys. Status Solidi (a) 207(6), 1437–1449 (2010)Google Scholar
  7. 7.
    H.Q. Chiang, Development of oxide semiconductors: materials, devices, and integration. Ph.D thesis, Oregon State University, 2007Google Scholar
  8. 8.
    G. Boesen, J. Jacobs, ZnO field-effect transistor. Proc. IEEE 56(11), 2094–2095 (1968)CrossRefGoogle Scholar
  9. 9.
    S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J. Appl. Phys. 93(3), 1624–1630 (2003)CrossRefGoogle Scholar
  10. 10.
    R.L. Hoffman, Zno-channel thin-film transistors: channel mobility. J. Appl. Phys. 95(10), 5813–5819 (2004)CrossRefGoogle Scholar
  11. 11.
    P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes, Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 82(7), 1117 (2003)Google Scholar
  12. 12.
    E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, R.F.P. Martins, L.M. Pereira, Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett. 85(13), 2541 (2004)Google Scholar
  13. 13.
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 300(5623), 1269–1272 (2003)CrossRefGoogle Scholar
  14. 14.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004)CrossRefGoogle Scholar
  15. 15.
    T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous InGaZnO thin-film transistors. Sci. Technol. Adv. Mater. 11(4), 044305 (2010)Google Scholar
  16. 16.
    N.L. Dehuff, E.S. Kettenring, D. Hong, H.Q. Chiang, J.F. Wager, R.L. Hoffman, C.-H. Park, D.A. Keszler, Transparent thin-film transistors with zinc indium oxide channel layer. J. Appl. Phys. 97(6), 064505 (2005)Google Scholar
  17. 17.
    P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, E. Fortunato, Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide. J. Non Cryst. Solids 352(9–20), 1749–1752 (2006)CrossRefGoogle Scholar
  18. 18.
    H. Hosono, K. Nomura, Y. Ogo, T. Uruga, T. Kamiya, Factors controlling electron transport properties in transparent amorphous oxide semiconductors. J. Non Cryst. Solids 354(19–25), 2796–2800 (2008)CrossRefGoogle Scholar
  19. 19.
    D. Kang, I. Song, C. Kim, Y. Park, T.D. Kang, H.S. Lee, J.-W. Park, S.H. Baek, S.-H. Choi, H. Lee, Effect of ga in ratio on the optical and electrical properties of GaInZnO thin films grown on SiO/Si substrates. Appl. Phys. Lett. 91, 910 (2007)Google Scholar
  20. 20.
    P. Barquinha, L. Pereira, G. Goncalves, R. Martins, E. Fortunato, Toward high-performance amorphous GIZO TFTs. J. Electrochem. Soc. 156(3), H161 (2009)Google Scholar
  21. 21.
    E. Elangovan, K.J. Saji, S. Parthiban, G. Goncalves, P. Barquinha, R. Martins, E. Fortunato, Thin-film transistors based on indium molybdenum oxide semiconductor layers sputtered at room temperature. IEEE Electron Device Lett. 32(10), 1391–1393 (2011)CrossRefGoogle Scholar
  22. 22.
    J Robertson, Interfaces and defects of high-k oxides on silicon. Solid State Electron. 49(3), 283–293 (2005)CrossRefGoogle Scholar
  23. 23.
    J Robertson, B Falabretti, Band offsets of high k gate oxides on high mobility semiconductors. Mater. Sci. Eng. B 135(3), 267–271 (2006)CrossRefGoogle Scholar
  24. 24.
    P. Barquinha, R. Martins, L. Pereira, E. Fortunato, Transparent Oxide Electronics: From Materials to Devices (Wiley, Chichester, 2012)CrossRefGoogle Scholar
  25. 25.
    J.F. Wager, Transparent electronics. Science 300(5623), 1245–1246 (2003)CrossRefGoogle Scholar
  26. 26.
    L. Zhang, J. Li, X.W. Zhang, X.Y. Jiang, Z.L. Zhang, High-performance ZnO thin film transistors with sputtering SiO2/Ta2O5/SiO2 multilayer gate dielectric. Thin Solid Films 518(21), 6130–6133 (2010)CrossRefGoogle Scholar
  27. 27.
    L. Zhang, H. Zhang, J.W. Ma, X.W. Zhang, X.Y. Jiang, Z.L. Zhang, Copper phthalocyanine thin-film field-effect transistor with SiO2/Ta2O5/SiO2 multilayer insulator. Thin Solid Films 518(21), 6134–6136 (2010)CrossRefGoogle Scholar
  28. 28.
    R.S. Chen, W. Zhou, M. Zhang, M. Wong, H.S. Kwok, Self-aligned top-gate InGaZnO thin film transistors using SiO2/Al2O3 stack gate dielectric. Thin Solid Films 548, 572–575 (2013)CrossRefGoogle Scholar
  29. 29.
    L. Pereira, P. Barquinha, G. Gonçalves, E. Fortunato, R. Martins, Multicomponent dielectrics for oxide TFT, in Oxide-Based Materials and Devices III, ed. by F.H. Teherani, D.C. Look, D.J. Rogers. Proceedings of SPIE, vol. 8263 (2012), p. 826316. doi:  10.1117/12.909454.
  30. 30.
    C. Opoku, K.F. Hoettges, M.P. Hughes, V. Stolojan, S.R.P. Silva, M. Shkunov, Solution processable multi-channel ZnO nanowire field-effect transistors with organic gate dielectric. Nanotechnology 24(40), 405203 (2013)Google Scholar
  31. 31.
    Y. Wang, S.W. Liu, X.W. Sun, J.L. Zhao, G.K.L. Goh, Q.V. Vu, H.Y. Yu, Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors. J. Sol-Gel Sci. Technol. 55(3), 322–327 (2010)CrossRefGoogle Scholar
  32. 32.
    M.K. Ryu, K. Park, J.B. Seon, J. Park, I. Kee, Y. Lee, S.Y. Lee, in AMOLED Driven by Solution-Processed Oxide Semiconductor TFT, ed. by J. Morreale (Soc Information Display, Campbell, 2009)Google Scholar
  33. 33.
    K. Song, D. Kim, X.S. Li, T. Jun, Y. Jeong, J. Moon, Solution processed invisible all-oxide thin film transistors.J. Mater. Chem. 19(46), 8881–8886 (2009)Google Scholar
  34. 34.
    Y.-H. Yang, S. Yang, C.-Y. Kao, K.-S. Chou, Chemical and electrical properties of low-temperature solution-processed InGaZn-O thin-film transistors. IEEE Electron Device Lett. 31(4), 329–331 (2010)CrossRefGoogle Scholar
  35. 35.
    K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a sol–gel on chip process. Nat. Mater. 10(1), 45–50 (2011)CrossRefGoogle Scholar
  36. 36.
    M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10(5), 382–388 (2011)CrossRefGoogle Scholar
  37. 37.
    R. Martins, V. Figueiredo, R. Barros, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, E. Fortunato, P-type oxide-based thin film transistors produced at low temperatures, in Oxide-based Materials and Devices III, ed. by F.H. Teherani, D.C. Look, D.J. Rogers. Proceedings of SPIE, vol. 8263 (2012), p. 826315. doi:  10.1117/12.907387.
  38. 38.
    B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P.J. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, C. Ronning, Binary copper oxide semiconductors: from materials towards devices. Phys. Status Solidi B 249(8), 1487–1509 (2012)CrossRefGoogle Scholar
  39. 39.
    R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. Ahnood, I. Ferreira, E. Fortunato, Complementary metal oxide semiconductor technology with and on paper. Adv. Mater. 23(39), 4491–4496 (2011)CrossRefGoogle Scholar
  40. 40.
    R.F.P. Martins, A. Ahnood, N. Correia, L.M.N.P. Pereira, R. Barros, P.M.C.B. Barquinha, R. Costa, I.M.M. Ferreira, A. Nathan, E.E.M.C. Fortunato, Recyclable, flexible, low-power oxide electronics. Adv. Funct. Mater. 23(17), 2153–2161 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Ana Paula Pinto Correia
    • 1
  • Pedro Miguel Cândido Barquinha
    • 2
  • João Carlos da Palma Goes
    • 1
  1. 1.CTS/UNINOVA and Department of Electrical EngineeringUniversidade NOVA de LisboaLisbonPortugal
  2. 2.I3N/CENIMAT and Department of Materials ScienceUniversidade NOVA de LisboaLisbonPortugal

Personalised recommendations