Skip to main content

Noncoding RNAs and Chromatin Modifications in the Developmental Control of Imprinted Genes

  • Chapter
  • First Online:
Epigenetics - A Different Way of Looking at Genetics

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1749 Accesses

Abstract

In mammals, hundreds of protein-coding genes and regulatory noncoding RNAs (ncRNAs) are controlled by the epigenetic phenomenon of genomic imprinting. These unusual genes are organized in clusters in the genome, and their mono-allelic expression depends on whether the allele is inherited from the mother or from the father. The imprinted gene expression is mediated by essential regulatory sequence elements called “imprinting control regions” (ICRs), which carry mono-allelic DNA methylation marks. These germ line-derived imprints are maintained throughout development and after birth, a process which is linked consistently to specific chromatin modifications. The way ICRs mediate mono-allelic gene expression is tissue specific at many of the imprinted gene clusters. At several imprinted gene domains, the ICR expresses a long ncRNA that mediates chromatin repression in cis. At other imprinted domains, the ICR differentially structures higher-order chromatin that allows, or prevents, transcription of close-by genes. Here, I introduce the epigenetic phenomenon of genomic imprinting and discuss how long ncRNAs and chromatin contribute to its developmental regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5hm:

5-Hydroxymethylcytosine

5mC:

5-Methylcytosine

BWS:

Beckwith-Wiedemann syndrome

CpG:

Cytosine-phosphate-guanine

DMR:

Differentially methylated region

gDMR:

DMR with germ line-derived allele-specific DNA methylation

ICR:

Imprinting control region

KMT:

Lysine methyltransferase

lncRNA:

Long noncoding RNA (more than 200 bases in length)

MBD:

Methyl-CpG-binding domain

ncRNA:

Noncoding RNA

PRC:

Polycomb repressive complex

PWS:

Prader-Willi syndrome

TNDM:

Transient neonatal diabetes mellitus

References

  • Abi Habib W, Azzi S, Brioude F, Steunou V, Thibaud N, Das Neves C, Le Jule M, Chantot-Bastaraud S, Keren B, Lyonnet S, Michot C, Rossi M, Pasquier L, Gicquel C, Rossignol S, Le Bouc Y, Netchine I (2014) Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome. Hum Mol Genet 23:5763–5773

    Article  PubMed  Google Scholar 

  • Al Adhami H, Evano B, Le Digarcher A, Gueydan C, Dubois E, Parrinello H, Dantec C, Bouschet T, Varrault A, Journot L (2015) A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation. Genome Res 25(3):353–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auclair G, Borgel J, Sanz LA, Gilbert S, Cavelier P, Forné T, Girardot M, Feil R, Weber M (2015) EHMT2 controls DNA methylation at specific genomic sites during mouse embryogenesis. Genome Res. Epub ahead of print

    Google Scholar 

  • Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N, Duboule D, Ephrussi A, Ferguson-Smith AC, Gingeras TR, Haerty W, Higgs DR, Miska EA, Ponting CP (2014) Considerations when investigating lncRNA function in vivo. Elife 3, e03058

    Article  PubMed  PubMed Central  Google Scholar 

  • Beygo J, Elbracht M, de Groot K, Begemann M, Kanber D, Platzer K, Gillessen-Kaesbach G, Vierzig A, Green A, Heller R, Buiting K, Eggermann T (2015) Novel deletions affecting the MEG3-DMR provide further evidence for a hierarchical regulation of imprinting in 14q32. Eur J Hum Genet 23(2):180–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D (2012) A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149:819–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattanach BM, Beechey CV, Peters J (2004) Interactions between imprinting effects in the mouse. Genetics 168:397–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chotalia M, Smallwood SA, Ruf N, Dawson C, Lucifero D, Frontera M, James K, Dean W, Kelsey G (2009) Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev 23:105–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461:415–418

    Article  CAS  PubMed  Google Scholar 

  • Court F, Camprubi C, Garcia CV, Guillaumet-Adkins A, Sparago A, Seruggia D, Sandoval J, Esteller M, Martin-Trujillo A, Riccio A, Montoliu L, Monk D (2014) The PEG13-DMR and brain-specific enhancers dictate imprinted expression within the 8q24 intellectual disability risk locus. Epigenetics Chromatin 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  • da Rocha ST, Tevendale M, Knowles E, Takada S, Watkins M, Ferguson-Smith AC (2007) Restricted co-expression of Dlk1 and the reciprocally imprinted non-coding RNA, Gtl2: implications for cis-acting control. Dev Biol 306:810–823

    Article  PubMed  Google Scholar 

  • da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC (2008) Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 24:306–316

    Article  PubMed  Google Scholar 

  • Delaval K, Govin J, Cerqueira F, Rousseaux S, Khochbin S, Feil R (2007) Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J 26:720–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cerbo V, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, Kallis E, Holzner M, Hoerner L, Feldmann A, Richter FM, Bannister AJ, Mittler G, Michaelis J, Khochbin S, Feil R, Schuebeler D, Owen-Hughes T, Daujat S, Schneider R (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. Elife 3, e01632

    Article  PubMed  PubMed Central  Google Scholar 

  • Duffie R, Bourc’his D (2013) Parental epigenetic asymmetry in mammals. Curr Top Dev Biol 104:293–328

    Article  CAS  PubMed  Google Scholar 

  • Engel N, Thorvaldsen JL, Bartolomei MS (2006) CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum Mol Genet 15:2945–2954

    Article  CAS  PubMed  Google Scholar 

  • Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S, Sproul D, Gilbert N, Fan Y, Skoultchi AI, Wutz A, Bickmore WA (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38:452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feil R (2009a) Epigenetic asymmetry in the zygote and mammalian development. Int J Dev Biol 53:191–201

    Article  CAS  PubMed  Google Scholar 

  • Feil R (2009b) Epigenetics: ready for the marks. Nature 461:359–360

    Article  CAS  PubMed  Google Scholar 

  • Feil R, Walter J, Allen ND, Reik W (1994) Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120:2933–2943

    CAS  PubMed  Google Scholar 

  • Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  CAS  PubMed  Google Scholar 

  • Franco MM, Prickett AR, Oakey RJ (2014) The role of CCCTC-binding factor (CTCF) in genomic imprinting, development, and reproduction. Biol Reprod 91:125

    Article  PubMed  Google Scholar 

  • Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forne T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L (2009) H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136:3413–3421

    Article  CAS  PubMed  Google Scholar 

  • Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45:814–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovarelli M, Bucci G, Ramos A, Bordo D, Wilusz CJ, Chen CY, Puppo M, Briata P, Gherzi R (2014) H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proc Natl Acad Sci U S A 111:E5023–E5028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardot M, Cavaille J, Feil R (2012) Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease. Epigenetics 7:1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardot M, Feil R, Lleres D (2013) Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics 5:715–728

    Article  CAS  PubMed  Google Scholar 

  • Girardot M, Hirasawa R, Kacem S, Fritsch L, Pontis J, Kota SK, Filipponi D, Fabbrizio E, Sardet C, Lohmann F, Kadam S, Ait-Si-Ali S, Feil R (2014) PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G + C-rich regions of the mouse genome. Nucleic Acids Res 42:235–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong W, Zhou T, Mo J, Perrett S, Wang J, Feng Y (2012) Structural insight into recognition of methylated histone tails by retinoblastoma-binding protein 1. J Biol Chem 287:8531–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, He S, Shi P, Dong L, Li G, Tian C, Wang J, Cong Y, Xu Y (2015) Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517:640–644

    Article  CAS  PubMed  Google Scholar 

  • Henckel A, Chebli K, Kota SK, Arnaud P, Feil R (2012) Transcription and histone methylation changes correlate with imprint acquisition in male germ cells. EMBO J 31:606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirasawa R, Feil R (2008) A KRAB domain zinc finger protein in imprinting and disease. Dev Cell 15:487–488

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa R, Feil R (2010) Genomic imprinting and human disease. Essays Biochem 48:187–200

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R, Sasaki H (2008) Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 22:1607–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori N, Yamane M, Kouno K, Sato K (2012) Induction of DNA demethylation depending on two sets of Sox2 and adjacent Oct3/4 binding sites (Sox-Oct motifs) within the mouse H19/insulin-like growth factor 2 (Igf2) imprinted control region. J Biol Chem 287:44006–44016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  • Kacem S, Feil R (2009) Chromatin mechanisms in genomic imprinting. Mamm Genome 20:544–556

    Article  CAS  PubMed  Google Scholar 

  • Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, Yamamori S, Kishimoto H, Nakayama M, Tanaka Y, Matsuoka K, Takahashi T, Noguchi M, Masumoto K, Utsunomiya T, Kouzan H, Komatsu Y, Ohashi H, Kurosawa K, Kosaki K, Ferguson-Smith AC, Ishino F, Ogata T (2008) Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet 40:237–242

    Article  CAS  PubMed  Google Scholar 

  • Kaneko S, Bonasio R, Saldana-Meyer R, Yoshida T, Son J, Nishino K, Umezawa A, Reinberg D (2014) Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol Cell 53:290–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelsey G, Feil R (2013) New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond B Biol Sci 368:20110336

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JD, Kim H, Ekram MB, Yu S, Faulk C, Kim J (2011) Rex1/Zfp42 as an epigenetic regulator for genomic imprinting. Hum Mol Genet 20:1353–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y, Suzuki Y, Kono T (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8, e1002440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kota SK, Feil R (2010) Epigenetic transitions in germ cell development and meiosis. Dev Cell 19:675–686

    Article  CAS  PubMed  Google Scholar 

  • Kota SK, Lleres D, Bouschet T, Hirasawa R, Marchand A, Begon-Pescia C, Sanli I, Arnaud P, Journot L, Girardot M, Feil R (2014) ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1-Dio3 domain. Dev Cell 31:19–33

    Article  CAS  PubMed  Google Scholar 

  • Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 103:10684–10689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latos PA, Pauler FM, Koerner MV, Senergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, Aumayr K, Pasierbek P, Barlow DP (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–1323

    Article  CAS  PubMed  Google Scholar 

  • Leung D, Du T, Wagner U, Xie W, Lee AY, Goyal P, Li Y, Szulwach KE, Jin P, Lorincz MC, Ren B (2014) Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1. Proc Natl Acad Sci U S A 111:6690–6695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W, Walter J, Higgins M, Feil R, Reik W (2004) Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet 36:1291–1295

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC (2008) A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, Cavaille J, Ferguson-Smith AC (2003) Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 35:97–102

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Lin S, Bartolomei MS, Schultz RM (2010) Metastasis tumor antigen 2 (MTA2) is involved in proper imprinted expression of H19 and Peg3 during mouse preimplantation development. Biol Reprod 83:1027–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, Dayanikli P, Firth HV, Goodship JA, Haemers AP, Hahnemann JM, Kordonouri O, Masoud AF, Oestergaard E, Storr J, Ellard S, Hattersley AT, Robinson DO, Temple IK (2008) Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40:949–951

    Article  CAS  PubMed  Google Scholar 

  • Mager J, Montgomery ND, de Villena FP, Magnuson T (2003) Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet 33:502–507

    Article  CAS  PubMed  Google Scholar 

  • Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JR, Woods CG, Reik W, Maher ER (2009) Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet 5, e1000423

    Article  PubMed  PubMed Central  Google Scholar 

  • Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, Feil R, Moore GE (2006) Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci U S A 103:6623–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monk D, Wagschal A, Arnaud P, Muller PS, Parker-Katiraee L, Bourc’his D, Scherer SW, Feil R, Stanier P, Moore GE (2008) Comparative analysis of human chromosome 7q21 and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, TFPI2/Tfpi2, which requires EHMT2 and EED for allelic-silencing. Genome Res 18:1270–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L (2013) H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci U S A 110:20693–20698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465

    Article  CAS  PubMed  Google Scholar 

  • Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36:889–893

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–1720

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, Sekimoto T, Ikawa M, Yoneda Y, Okabe M, Tanaka S, Shiota K, Nakano T (2007) PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 9:64–71

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, Tachibana M, Ogura A, Shinkai Y, Nakano T (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486:415–419

    CAS  PubMed  Google Scholar 

  • Natoli G, Andrau JC (2012) Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 46:1–19

    Article  CAS  PubMed  Google Scholar 

  • Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246

    Article  CAS  PubMed  Google Scholar 

  • Pannetier M, Julien E, Schotta G, Tardat M, Sardet C, Jenuwein T, Feil R (2008) PR-SET7 and SUV4-20H regulate H4 lysine-20 methylation at imprinting control regions in the mouse. EMBO Rep 9:998–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauler FM, Barlow DP, Hudson QJ (2012) Mechanisms of long range silencing by imprinted macro non-coding RNAs. Curr Opin Genet Dev 22:283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters J (2014) The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 15:517–530

    Article  CAS  PubMed  Google Scholar 

  • Proudhon C, Duffie R, Ajjan S, Cowley M, Iranzo J, Carbajosa G, Saadeh H, Holland ML, Oakey RJ, Rakyan VK, Schulz R, Bourc’his D (2012) Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol Cell 47:909–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, Baglivo I, Pedone PV, Grimaldi G, Riccio A, Trono D (2011) In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44:361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovitz S, Kaufman Y, Ludwig G, Razin A, Shemer R (2012) Mechanisms of activation of the paternally expressed genes by the Prader-Willi imprinting center in the Prader-Willi/Angelman syndromes domains. Proc Natl Acad Sci U S A 109:7403–7408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redrup L, Branco MR, Perdeaux ER, Krueger C, Lewis A, Santos F, Nagano T, Cobb BS, Fraser P, Reik W (2009) The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development 136:525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reese KJ, Lin S, Verona RI, Schultz RM, Bartolomei MS (2007) Maintenance of paternal methylation and repression of the imprinted H19 gene requires MBD3. PLoS Genet 3, e137

    Article  PubMed  PubMed Central  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Schoenherr CJ, Levorse JM, Tilghman SM (2003) CTCF maintains differential methylation at the Igf2/H19 locus. Nat Genet 33:66–69

    Article  CAS  PubMed  Google Scholar 

  • Schultz BM, Gallicio GA, Cesaroni M, Lupey LN, Engel N (2015) Enhancers compete with a long non-coding RNA for regulation of the Kcnq1 domain. Nucleic Acids Res 43:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813

    Article  CAS  PubMed  Google Scholar 

  • Smallwood SA, Kelsey G (2012) De novo DNA methylation: a germ cell perspective. Trends Genet 28:33–42

    Article  CAS  PubMed  Google Scholar 

  • Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelzer Y, Sagi I, Yanuka O, Eiges R, Benvenisty N (2014) The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet 46:551–557

    Article  CAS  PubMed  Google Scholar 

  • Strogantsev R, Krueger F, Yamazawa K, Shi H, Gould P, Goldman-Roberts M, McEwen K, Sun B, Pedersen R, Ferguson-Smith AC (2015) Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression. Genome Biol 16:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Puchyr M, Gertsenstein M, Harpal K, Jaenisch R, Rossant J, Nagy A (1999) Parental origin-specific expression of Mash2 is established at the time of implantation with its imprinting mechanism highly resistant to genome-wide demethylation. Mech Dev 87:129–142

    Article  CAS  PubMed  Google Scholar 

  • Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M, Orkin SH, Peters AH (2008) Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 15:668–679

    Article  CAS  PubMed  Google Scholar 

  • Umlauf D, Goto Y, Cao R, Cerqueira F, Wagschal A, Zhang Y, Feil R (2004) Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 36:1296–1300

    Article  CAS  PubMed  Google Scholar 

  • Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, Pavlidis P, Journot L (2006) Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 11:711–722

    Article  CAS  PubMed  Google Scholar 

  • Voon HP, Hughes JR, Rode C, De La Rosa-Velazquez IA, Jenuwein T, Feil R, Higgs DR, Gibbons RJ (2015) ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes. Cell Rep 11:405–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagschal A, Sutherland HG, Woodfine K, Henckel A, Chebli K, Schulz R, Oakey RJ, Bickmore WA, Feil R (2008) G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol Cell Biol 28:1104–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson CM, Blake A, Thomas S, Beechey CV, Hancock J, Cattanach BM, Peters J (2013) Mouse imprinting data and references. MRC Harwell, Oxfordshire. http://www.har.mrc.ac.uk/research/genomic_imprinting/

  • Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241

    Article  PubMed  Google Scholar 

  • Wu MY, Tsai TF, Beaudet AL (2006) Deficiency of Rbbp1/Arid4a and Rbbp1l1/Arid4b alters epigenetic modifications and suppresses an imprinting defect in the PWS/AS domain. Genes Dev 20:2859–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin Z, Tachibana M, Guggiari M, Heard E, Shinkai Y, Wagstaff J (2003) Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J Biol Chem 278:14996–15000

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Smorag L, Nakamura T, Kimura T, Dressel R, Fitzner A, Tan X, Linke M, Zechner U, Engel W, Krishna Pantakani DV (2015) Dppa3 expression is critical for generation of fully reprogrammed iPS cells and maintenance of Dlk1-Dio3 imprinting. Nat Commun 6:6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SM, Kim BJ, Norwood Toro L, Skoultchi AI (2013) H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation. Proc Natl Acad Sci U S A 110:1708–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zeitz MJ, Wang H, Niu B, Ge S, Li W, Cui J, Wang G, Qian G, Higgins MJ, Fan X, Hoffman AR, Hu JF (2014) Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus. J Cell Biol 204:61–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40:939–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Cheunsuchon P, Nakayama Y, Lawlor MW, Zhong Y, Rice KA, Zhang L, Zhang X, Gordon FE, Lidov HG, Bronson RT, Klibanski A (2010) Activation of paternally expressed genes and perinatal death caused by deletion of the Gtl2 gene. Development 137:2643–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank all members of the Genomic Imprinting and Development laboratory for discussion and comments. Our discussed research is grant funded by the National Research Agency (ANR) and the Institut National Contre le Cancer (INCa). Our laboratory is affiliated to the Montpellier Laboratory of Excellence “EPIGENMED,” the EU 7th Framework COST Action “Human Congenital Imprinting Disorders,” and the EU 7th Framework Network of Excellence “EpiGeneSys.”

Conflict of Interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Feil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feil, R. (2016). Noncoding RNAs and Chromatin Modifications in the Developmental Control of Imprinted Genes. In: Doerfler, W., Böhm, P. (eds) Epigenetics - A Different Way of Looking at Genetics. Epigenetics and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-319-27186-6_2

Download citation

Publish with us

Policies and ethics