Skip to main content

A Number-Theoretic Error-Correcting Code

  • Conference paper
  • First Online:
Innovative Security Solutions for Information Technology and Communications (SECITC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9522))

Included in the following conference series:

Abstract

In this paper we describe a new error-correcting code (ECC) inspired by the Naccache-Stern cryptosystem. While by far less efficient than Turbo codes, the proposed ECC happens to be more efficient than some established ECCs for certain sets of parameters.

The new ECC adds an appendix to the message. The appendix is the modular product of small primes representing the message bits. The receiver recomputes the product and detects transmission errors using modular division and lattice reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Shannon’s theorem states that the best achievable expansion rate is \(1 - H_2(p_b)\), where \(H_2\) is binary entropy and \(p_b\) is the acceptable error rate.

  2. 2.

    i.e. encoded and potentially corrupted.

  3. 3.

    \(p_k \simeq k\ln k\).

References

  1. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: turbo-codes. In: IEEE International Conference on Communications - ICC 1993, vol. 2, pp. 1064–1070, May 1993

    Google Scholar 

  2. Chevallier-Mames, B., Naccache, D., Stern, J.: Linear bandwidth naccache-stern encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 327–339. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Dusart, P.: The \(k{\rm {th}}\) prime is greater than \(k (\ln k+ \ln \ln k-1)\) for \(k \ge 2\). Math. Comput. 68, 411–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Elias, P.: Coding for noisy channels. In: IRE Convention Record, pp. 37–46 (1955)

    Google Scholar 

  5. Fouque, P.-A., Stern, J., Wackers, G.-J.: CryptoComputing with rationals. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Goppa, V.D.: Codes on algebraic curves. Sov. Math. Dokl. 24, 170–172 (1981)

    MathSciNet  MATH  Google Scholar 

  7. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  8. Muller, D.E.: Application of boolean algebra to switching circuit design and to error detection. IRE Trans. Inf. Theory 3, 6–12 (1954)

    Google Scholar 

  9. Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997)

    Google Scholar 

  10. Reed, I.: A class of multiple-error-correcting codes and the decoding scheme. IRE Trans. Inf. Theory 4, 38–49 (1954)

    Article  MathSciNet  Google Scholar 

  11. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rosser, J.B.: The \(n\)-th prime is greater than \(n \ln n\). Proc. Lond. Math. Soc. 45, 21–44 (1938)

    MathSciNet  MATH  Google Scholar 

  13. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vallée, B.: Gauss’ algorithm revisited. J. Algorithms 12(4), 556–572 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Maimuţ .

Editor information

Editors and Affiliations

A Toy Example

A Toy Example

Let m be the 10-bit message 1100100111. For \(t=2\), we let p be the smallest prime number greater than \(2 \cdot 29^4\), i.e. \(p=707293\). We generate the redundancy:

$$c(m)=2^1 \cdot 3^1\cdot 5^0 \cdot 7^0 \cdot 11^1 \cdot 13^0 \cdot 17^0 \cdot 19^1 \cdot 23^1 \cdot 29^1\,\,\mathrm{{mod}}\,\,707293 $$
$$\Rightarrow c(m)= 836418\,\,\mathrm{{mod}}\,\,707293 = 129125.$$

As we focus on the new error-correcting code we simply omit the Reed-Muller component. The encoded message is

$$\nu (m)=\mathtt{1100100111_2} \Vert \mathtt{129125_{10}}.$$

Let the received encoded message be \(\alpha =\mathtt{1100101011_2} \Vert \mathtt{129125_{10}}\). Thus,

$$c(m')=2^1 \cdot 3^1 \cdot 5^0 \cdot 7^0 \cdot 11^1 \cdot 13^0 \cdot 17^1 \cdot 19^0 \cdot 23^1 \cdot 29^1\,\,\mathrm{{mod}}\,\,p$$
$$\Rightarrow c(m')= 748374\,\,\mathrm{{mod}}\,\,707293 = 41081.$$

Dividing by c(m) we get

$$s = \frac{c(m')}{c(m)} = \frac{41081}{129125}\,\,\mathrm{{mod}}\,\,707293 = 632842$$

Applying the rationalize and factor technique we obtain \(s = \displaystyle \frac{17}{19}\,\,\mathrm{{mod}}\,\,707293\). It follows that \(m' \oplus m = \mathtt{0000001100}\). Flipping the bits retrieved by this calculation, we recover m.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brier, E., Coron, JS., Géraud, R., Maimuţ, D., Naccache, D. (2015). A Number-Theoretic Error-Correcting Code. In: Bica, I., Naccache, D., Simion, E. (eds) Innovative Security Solutions for Information Technology and Communications. SECITC 2015. Lecture Notes in Computer Science(), vol 9522. Springer, Cham. https://doi.org/10.1007/978-3-319-27179-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27179-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27178-1

  • Online ISBN: 978-3-319-27179-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics