Skip to main content

Accurate Map-Based RGB-D SLAM for Mobile Robots

  • Conference paper
  • First Online:
Robot 2015: Second Iberian Robotics Conference

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 418))

Abstract

In this paper we present and evaluate a map-based RGB-D SLAM (Simultaneous Localization and Mapping) system employing a novel idea of combining efficient visual odometry and a persistent map of 3D point features used to jointly optimize the sensor (robot) poses and the feature positions. The optimization problem is represented as a factor graph. The SLAM system consists of a front-end that tracks the sensor frame-by-frame, extracts point features, and associates them with the map, and a back-end that manages and optimizes the map. We propose a robust approach to data association, which combines efficient selection of candidate features from the map, matching of visual descriptors guided by the sensor pose prediction from visual odometry, and verification of the associations in both the image plane and 3D space. The improved accuracy and robustness is demonstrated on publicly available data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Belter, D., Skrzypczyński, P.: Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping. Industrial Robot: An International Journal 40(3), 229–237 (2013)

    Article  Google Scholar 

  3. Belter, D., Nowicki, M., Skrzypczyński, P.: On the performance of pose-based RGB-D visual navigation systems. In: Cremers, D., et al. (eds.) Computer Vision – ACCV 2014. LNCS, vol. 9004, pp. 407–423. Springer (2015)

    Google Scholar 

  4. Belter, D., Skrzypczyński, P.: The importance of measurement uncertainty modeling in the feature-based RGB-D SLAM. In: Proc. Int. Workshop on Robot Motion and Control, Poznań, pp. 308–313 (2015)

    Google Scholar 

  5. Cummins, M., Newman, P.: Accelerating FAB-MAP with Concentration Inequalities. IEEE Trans. on Robotics 26(6), 1042–1050 (2010)

    Article  Google Scholar 

  6. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D Mapping with an RGB-D Camera. IEEE Trans. on Robotics 30(1), 177–187 (2014)

    Article  Google Scholar 

  7. Fioraio, N., Di Stefano, L.: SlamDunk: affordable real-time RGB-D SLAM. In: Computer Vision – ECCV 2014 Workshops. LNCS, vol. 8925, pp. 401-414. Springer (2015)

    Google Scholar 

  8. Gil, A., Martinez Mozos, O., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point detectors and local descriptors for visual SLAM. Machine Vision and Applications 21(6), 905–920 (2010)

    Article  Google Scholar 

  9. Grisetti, G., Kümmerle, R., Ni, K.: Robust optimization of factor graphs by using condensed measurements. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Vilamoura, pp. 581–588 (2012)

    Google Scholar 

  10. Handa, A., Whelan, T., McDonald, J. B., Davison, A. J.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: IEEE Int. Conf. on Robotics & Automation, Hong Kong, pp. 1524–1531 (2014)

    Google Scholar 

  11. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. Int. Journal of Robot. Res. 31(5), 647–663 (2012)

    Article  Google Scholar 

  12. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: Proc. IEEE Int. Conf. on Robotics & Automation, Karlsruhe, pp. 3748–3754 (2013)

    Google Scholar 

  13. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proc. Int. Symp. on Mixed and Augmented Reality, Nara, pp. 225–234 (2007)

    Google Scholar 

  14. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: IEEE Int. Conf. on Robotics & Automation, Shanghai, pp. 3607–3613 (2011)

    Google Scholar 

  15. Maier, R., Sturm, J., Cremers, D.: Submap-based bundle adjustment for 3D reconstruction from RGB-D Data. In: Pattern Recognition. LNCS, vol. 8753, pp. 54–65. Springer (2014)

    Google Scholar 

  16. Nowicki, M., Skrzypczyński, P.: Combining photometric and depth data for lightweight and robust visual odometry. In: European Conf. on Mobile Robots, Barcelona, pp. 125–130 (2013)

    Google Scholar 

  17. Ozawa, R., Takaoka, Y., Kida, Y., Nishiwaki, K., Chestnutt, J., Kuffner, J., Inoue, H.: Using visual odometry to create 3D maps for online footstep planning. In: IEEE Int. Conf. on Systems, Man and Cybernetics, Hawaii, pp. 2643–2648 (2005)

    Google Scholar 

  18. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE Int. Conf. on Computer Vision, pp. 2564–2571 (2011)

    Google Scholar 

  19. Scherer, S., Zell, A.: Efficient onboard RGBD-SLAM for autonomous MAVs. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Tokyo, pp. 1062–1068 (2013)

    Google Scholar 

  20. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conf. on Comp. Vis. and Pattern Recog., Seattle, pp. 593–600 (1994)

    Google Scholar 

  21. Strasdat, H., Davison, A. J. Montiel, J., Konolige, K.: Double window optimisation for constant time visual SLAM. In: Proc. Int. Conf. on Computer Vision, Los Alamitos, pp. 2352–2359 (2011)

    Google Scholar 

  22. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Vilamoura, pp. 573–580 (2012)

    Google Scholar 

  23. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Vision Algorithms: Theory and Practice. LNCS, vol. 1883, pp. 298–372. Springer (2000)

    Google Scholar 

  24. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. on Pattern Analysis & Machine Intelligence 13(4), 376–380 (1991)

    Article  Google Scholar 

  25. Whelan, T., Johannsson, H., Kaess, M., Leonard, J., McDonald, J.: Robust real-time visual odometry for dense RGB-D mapping. In: IEEE Int. Conf. on Robotics & Automation, Karlsruhe, pp. 5704–5711 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Skrzypczyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Belter, D., Nowicki, M., Skrzypczyński, P. (2016). Accurate Map-Based RGB-D SLAM for Mobile Robots. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27149-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27148-4

  • Online ISBN: 978-3-319-27149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics